6.
Dummer P, Limou S, Rosenberg A, Heymann J, Nelson G, Winkler C
. APOL1 Kidney Disease Risk Variants: An Evolving Landscape. Semin Nephrol. 2015; 35(3):222-36.
PMC: 4562465.
DOI: 10.1016/j.semnephrol.2015.04.008.
View
7.
Daneshpajouhnejad P, Kopp J, Winkler C, Rosenberg A
. The evolving story of apolipoprotein L1 nephropathy: the end of the beginning. Nat Rev Nephrol. 2022; 18(5):307-320.
PMC: 8877744.
DOI: 10.1038/s41581-022-00538-3.
View
8.
Vasquez-Rios G, de Cos M, Campbell K
. Novel Therapies in -Mediated Kidney Disease: From Molecular Pathways to Therapeutic Options. Kidney Int Rep. 2023; 8(11):2226-2234.
PMC: 10658239.
DOI: 10.1016/j.ekir.2023.08.028.
View
9.
Egbuna O, Zimmerman B, Manos G, Fortier A, Chirieac M, Dakin L
. Inaxaplin for Proteinuric Kidney Disease in Persons with Two Variants. N Engl J Med. 2023; 388(11):969-979.
DOI: 10.1056/NEJMoa2202396.
View
10.
Friedman D, Pollak M
. and Kidney Disease: From Genetics to Biology. Annu Rev Physiol. 2019; 82:323-342.
DOI: 10.1146/annurev-physiol-021119-034345.
View
11.
Nichols B, Jog P, Lee J, Blackler D, Wilmot M, DAgati V
. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int. 2014; 87(2):332-42.
PMC: 4312530.
DOI: 10.1038/ki.2014.270.
View
12.
Herrington W, Staplin N, Wanner C, Green J, Hauske S, Emberson J
. Empagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2022; 388(2):117-127.
PMC: 7614055.
DOI: 10.1056/NEJMoa2204233.
View
13.
Perkovic V, Jardine M, Neal B, Bompoint S, Heerspink H, Charytan D
. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019; 380(24):2295-2306.
DOI: 10.1056/NEJMoa1811744.
View
14.
Heerspink H, Stefansson B, Correa-Rotter R, Chertow G, Greene T, Hou F
. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. 2020; 383(15):1436-1446.
DOI: 10.1056/NEJMoa2024816.
View
15.
El-Daly M, Venu V, Saifeddine M, Mihara K, Kang S, Fedak P
. Hyperglycaemic impairment of PAR2-mediated vasodilation: Prevention by inhibition of aortic endothelial sodium-glucose-co-Transporter-2 and minimizing oxidative stress. Vascul Pharmacol. 2018; 109:56-71.
DOI: 10.1016/j.vph.2018.06.006.
View
16.
Chen Y, Liu Z, Gong P, Zhang H, Chen Y, Yao S
. Correction: Chen et al. The Chemerin/CMKLR1 Axis Is Involved in the Recruitment of Microglia to Aβ Deposition through p38 MAPK Pathway. 2022, , 9041. Int J Mol Sci. 2023; 24(1).
PMC: 9820245.
DOI: 10.3390/ijms24010506.
View
17.
Zahra M, Abrahamse H, George B
. Flavonoids: Antioxidant Powerhouses and Their Role in Nanomedicine. Antioxidants (Basel). 2024; 13(8).
PMC: 11351814.
DOI: 10.3390/antiox13080922.
View
18.
Makaro A, Swierczynski M, Pokora K, Sarniak B, Kordek R, Fichna J
. Empagliflozin attenuates intestinal inflammation through suppression of nitric oxide synthesis and myeloperoxidase activity in in vitro and in vivo models of colitis. Inflammopharmacology. 2023; 32(1):377-392.
PMC: 10907478.
DOI: 10.1007/s10787-023-01227-8.
View
19.
Koyani C, Plastira I, Sourij H, Hallstrom S, Schmidt A, Rainer P
. Empagliflozin protects heart from inflammation and energy depletion via AMPK activation. Pharmacol Res. 2020; 158:104870.
DOI: 10.1016/j.phrs.2020.104870.
View
20.
Gaspari T, Spizzo I, Liu H, Hu Y, Simpson R, Widdop R
. Dapagliflozin attenuates human vascular endothelial cell activation and induces vasorelaxation: A potential mechanism for inhibition of atherogenesis. Diab Vasc Dis Res. 2017; 15(1):64-73.
DOI: 10.1177/1479164117733626.
View