» Articles » PMID: 40037197

Marine Plastic Exposure Triggers Rapid Recruitment of Plastic-degrading Bacteria and Accelerates Polymer-specific Transformations

Abstract

Plastic pollution in marine ecosystems is a growing concern, yet the degradation behavior of different plastic types and their interactions with microbial communities remain poorly understood. This study investigated the degradation kinetics and microbial colonization of four widely used plastic materials, surgical masks (most made of PP), PET bottles, PS foam, and PP cups, over 40 days of seawater exposure in the Central Atlantic of Morocco. Mass loss measurement revealed distinct degradation patterns, with PS foam showing the highest mass loss (13 %), followed by PET bottles (5 %), likely due to environmental stressors that promote mechanical fragmentation. Surgical masks and PP cups exhibited minimal degradation, retaining nearly all their original mass, as well as limited extent of biodegradation. Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD) analyses showed the formation of oxidative functional groups on PP cups and significant structural changes in PS foam and PET, particularly in their crystalline structures, correlating with their higher mass reduction rates. SEM/EDX biofilm imaging confirmed extensive microbial colonization, particularly on PS and PET surfaces. Using 16S rRNA metabarcoding, we identified a striking enrichment of Exiguobacterium, followed by Pseudomonas, Acinetobacter and Bacillus genera, containing reported plastic degrading strains, which were strongly correlated with the accelerated breakdown of plastics. However, its role in accelerating plastic breakdown in this study remains unclear and may warrant further investigation. Co-occurrence network analysis revealed a progressive shift in microbial community structure, evolving from highly interconnected networks at day 0 to more specialized, modular clusters by day 40, dominated by Proteobacteria and Firmicutes. Atomic Absorption Spectrometry (AAS) demonstrated significant heavy metal accumulation on plastic surfaces, potentially influencing microbial colonization and activity. While the observed fragmentation of PS foam and PET highlights the susceptibility of certain plastics to environmental stressors, this study also positions microbial colonization as a potential contributor to plastic surface changes, providing novel insights into the interplay between microbial communities and plastic degradation in marine environments.