Functionalized Zeolite Regulates Bone Metabolic Microenvironment
Overview
Affiliations
The regulation of bone metabolic microenvironment imbalances in diseases such as osteoporosis, bone defects, infections, and tumors remains a significant challenge in orthopedics. Therefore, it has become urgent to develop biomaterials with effective bone metabolic microenvironmental regulatory functions. Zeolites, as advanced biomedical materials, possess distinctive physicochemical properties such as multi-level pore structures, adjustable frameworks, easily modifiable surfaces, and excellent adsorption capabilities. These advantageous characteristics give zeolites broad application prospects in regulating the bone metabolic microenvironment. Therefore, this paper first classifies zeolites used to regulate the bone metabolic microenvironment based on their topological structures and compositional frameworks. Subsequently, it provides a detailed description of modification strategies for zeolite materials aimed at regulating this microenvironment. Next, a comprehensive summary was provided on the preparation strategies for zeolite materials aimed at regulating the bone metabolic microenvironment. Additionally, the paper focuses on the specific applications of zeolite materials in conditions of bone metabolic imbalance, such as osteoporosis, bone defects, orthopedic infections, and bone tumors, highlighting their potential in enhancing osteogenic microenvironments, controlling infections, and treating bone tumors. Finally, it outlines the prospects and challenges associated with the application of zeolites in regulating the bone metabolic microenvironment. This review comprehensively summarizes zeolites used for bone metabolic regulation, aiming to provide guidance for future research and application development.