6.
Zhang R, Wang C, Guan Y, Wei X, Sha M, Yi M
. Manganese salts function as potent adjuvants. Cell Mol Immunol. 2021; 18(5):1222-1234.
PMC: 8093200.
DOI: 10.1038/s41423-021-00669-w.
View
7.
Weiskopf K, Ring A, Ho C, Volkmer J, Levin A, Volkmer A
. Engineered SIRPα variants as immunotherapeutic adjuvants to anticancer antibodies. Science. 2013; 341(6141):88-91.
PMC: 3810306.
DOI: 10.1126/science.1238856.
View
8.
Zheng Q, Liu X, Zheng Y, Yeung K, Cui Z, Liang Y
. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev. 2021; 50(8):5086-5125.
DOI: 10.1039/d1cs00056j.
View
9.
Chang C, Qiu J, OSullivan D, Buck M, Noguchi T, Curtis J
. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell. 2015; 162(6):1229-41.
PMC: 4864363.
DOI: 10.1016/j.cell.2015.08.016.
View
10.
Ma G, Lin W
. Immune checkpoint inhibition mediated with liposomal nanomedicine for cancer therapy. Mil Med Res. 2023; 10(1):20.
PMC: 10142459.
DOI: 10.1186/s40779-023-00455-x.
View
11.
Bayir H, Dixon S, Tyurina Y, Kellum J, Kagan V
. Ferroptotic mechanisms and therapeutic targeting of iron metabolism and lipid peroxidation in the kidney. Nat Rev Nephrol. 2023; 19(5):315-336.
DOI: 10.1038/s41581-023-00689-x.
View
12.
Wang C, Guan Y, Lv M, Zhang R, Guo Z, Wei X
. Manganese Increases the Sensitivity of the cGAS-STING Pathway for Double-Stranded DNA and Is Required for the Host Defense against DNA Viruses. Immunity. 2018; 48(4):675-687.e7.
DOI: 10.1016/j.immuni.2018.03.017.
View
13.
Galluzzi L, Vitale I, Warren S, Adjemian S, Agostinis P, Buque Martinez A
. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J Immunother Cancer. 2020; 8(1).
PMC: 7064135.
DOI: 10.1136/jitc-2019-000337.
View
14.
Qu H, Jin X, Cheng W, Wu D, Ma B, Lou C
. Uncovering the Fate and Risks of Intravenously Injected Prussian Blue Nanoparticles in mice by an Integrated Methodology of Toxicology, Pharmacokinetics, Proteomics, and Metabolomics. Part Fibre Toxicol. 2023; 20(1):18.
PMC: 10161560.
DOI: 10.1186/s12989-023-00529-7.
View
15.
Pulendran B, Arunachalam P, OHagan D
. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov. 2021; 20(6):454-475.
PMC: 8023785.
DOI: 10.1038/s41573-021-00163-y.
View
16.
Wu W, Yu L, Pu Y, Yao H, Chen Y, Shi J
. Copper-Enriched Prussian Blue Nanomedicine for In Situ Disulfiram Toxification and Photothermal Antitumor Amplification. Adv Mater. 2020; 32(17):e2000542.
DOI: 10.1002/adma.202000542.
View
17.
Zhou T, Liang X, Wang P, Hu Y, Qi Y, Jin Y
. A Hepatocellular Carcinoma Targeting Nanostrategy with Hypoxia-Ameliorating and Photothermal Abilities that, Combined with Immunotherapy, Inhibits Metastasis and Recurrence. ACS Nano. 2020; 14(10):12679-12696.
DOI: 10.1021/acsnano.0c01453.
View
18.
Song J, Liu T, Yin Y, Zhao W, Lin Z, Yin Y
. The deubiquitinase OTUD1 enhances iron transport and potentiates host antitumor immunity. EMBO Rep. 2021; 22(2):e51162.
PMC: 7857436.
DOI: 10.15252/embr.202051162.
View
19.
Busquets M, Estelrich J
. Prussian blue nanoparticles: synthesis, surface modification, and biomedical applications. Drug Discov Today. 2020; 25(8):1431-1443.
DOI: 10.1016/j.drudis.2020.05.014.
View
20.
Zhang T, Hu C, Zhang W, Ruan Y, Ma Y, Chen D
. Advances of MnO nanomaterials as novel agonists for the development of cGAS-STING-mediated therapeutics. Front Immunol. 2023; 14:1156239.
PMC: 10154562.
DOI: 10.3389/fimmu.2023.1156239.
View