6.
Jomova K, Raptova R, Alomar S, Alwasel S, Nepovimova E, Kuca K
. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging. Arch Toxicol. 2023; 97(10):2499-2574.
PMC: 10475008.
DOI: 10.1007/s00204-023-03562-9.
View
7.
Reczek C, Birsoy K, Kong H, Martinez-Reyes I, Wang T, Gao P
. A CRISPR screen identifies a pathway required for paraquat-induced cell death. Nat Chem Biol. 2017; 13(12):1274-1279.
PMC: 5698099.
DOI: 10.1038/nchembio.2499.
View
8.
Yang J, Zhao X, Tang M, Li L, Lei Y, Cheng P
. The role of ROS and subsequent DNA-damage response in PUMA-induced apoptosis of ovarian cancer cells. Oncotarget. 2017; 8(14):23492-23506.
PMC: 5410321.
DOI: 10.18632/oncotarget.15626.
View
9.
Srinivas U, Tan B, Vellayappan B, Jeyasekharan A
. ROS and the DNA damage response in cancer. Redox Biol. 2019; 25:101084.
PMC: 6859528.
DOI: 10.1016/j.redox.2018.101084.
View
10.
Degtyareva N, Heyburn L, Sterling J, Resnick M, Gordenin D, Doetsch P
. Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines. Nucleic Acids Res. 2013; 41(19):8995-9005.
PMC: 3799438.
DOI: 10.1093/nar/gkt671.
View
11.
Rath S, Das S
. Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors. Environ Pollut. 2023; 339:122722.
DOI: 10.1016/j.envpol.2023.122722.
View
12.
Ragu S, Faye G, Iraqui I, Masurel-Heneman A, Kolodner R, Huang M
. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc Natl Acad Sci U S A. 2007; 104(23):9747-52.
PMC: 1887571.
DOI: 10.1073/pnas.0703192104.
View
13.
Poetsch A
. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. Comput Struct Biotechnol J. 2020; 18:207-219.
PMC: 6974700.
DOI: 10.1016/j.csbj.2019.12.013.
View
14.
Rhyu D, Yang Y, Ha H, Lee G, Song J, Uh S
. Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol. 2005; 16(3):667-75.
DOI: 10.1681/ASN.2004050425.
View
15.
Chang C, Pauklin S
. ROS and TGFβ: from pancreatic tumour growth to metastasis. J Exp Clin Cancer Res. 2021; 40(1):152.
PMC: 8091747.
DOI: 10.1186/s13046-021-01960-4.
View
16.
Giannoni E, Parri M, Chiarugi P
. EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal. 2011; 16(11):1248-63.
DOI: 10.1089/ars.2011.4280.
View
17.
Jiang J, Wang K, Chen Y, Chen H, Nice E, Huang C
. Redox regulation in tumor cell epithelial-mesenchymal transition: molecular basis and therapeutic strategy. Signal Transduct Target Ther. 2017; 2:17036.
PMC: 5661624.
DOI: 10.1038/sigtrans.2017.36.
View
18.
Chatterjee R, Chatterjee J
. ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol. 2020; 99(2-3):151073.
DOI: 10.1016/j.ejcb.2020.151073.
View
19.
Lee S, Ju M, Jeon H, Lee Y, Kim C, Park H
. Reactive oxygen species induce epithelial‑mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx‑2/Snail signaling pathways in MCF‑7 cells. Mol Med Rep. 2019; 20(3):2339-2346.
DOI: 10.3892/mmr.2019.10466.
View
20.
Feng Y, Wang K, Fan J, Wu X, Li T, Yang Z
. Mindfulness intervention, homogeneous medical concept, and concentrated solution nursing for colorectal cancer patients: a retrospective study. BMC Cancer. 2024; 24(1):1055.
PMC: 11348521.
DOI: 10.1186/s12885-024-12508-y.
View