6.
  
    Taccola S, Greco F, Zucca A, Innocenti C, de Julian Fernandez C, Campo G
    
    . Characterization of free-standing PEDOT:PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Appl Mater Interfaces. 2013; 5(13):6324-32.
    
          DOI: 10.1021/am4013775.
    
    
View
   
 
                                          
  7.
  
    Seok M, Yoon S, Kim M, Cho Y
    
    . A porous PDMS pulsewave sensor with haircell structures for water vapor transmission rate and signal-to-noise ratio enhancement. Nanoscale Adv. 2022; 3(16):4843-4850.
          PMC: 9418886.
    
          DOI: 10.1039/d1na00180a.
    
    
View
   
 
                                          
  8.
  
    Chi Y, Jung T, Cauwenberghs G
    
    . Dry-contact and noncontact biopotential electrodes: methodological review. IEEE Rev Biomed Eng. 2012; 3:106-19.
    
          DOI: 10.1109/RBME.2010.2084078.
    
    
View
   
 
                                          
  9.
  
    Spanu A, Mascia A, Baldazzi G, Fenech-Salerno B, Torrisi F, Viola G
    
    . Parylene C-Based, Breathable Tattoo Electrodes for High-Quality Bio-Potential Measurements. Front Bioeng Biotechnol. 2022; 10:820217.
          PMC: 8983861.
    
          DOI: 10.3389/fbioe.2022.820217.
    
    
View
   
 
                                          
  10.
  
    Tian G, Deng W, Yang T, Zhang J, Xu T, Xiong D
    
    . Hierarchical Piezoelectric Composites for Noninvasive Continuous Cardiovascular Monitoring. Adv Mater. 2024; 36(26):e2313612.
    
          DOI: 10.1002/adma.202313612.
    
    
View
   
 
                                          
  11.
  
    Bora D, Dasgupta R
    
    . Various skin impedance models based on physiological stratification. IET Syst Biol. 2020; 14(3):147-159.
          PMC: 8687402.
    
          DOI: 10.1049/iet-syb.2019.0013.
    
    
View
   
 
                                          
  12.
  
    Li H, Tan P, Rao Y, Bhattacharya S, Wang Z, Kim S
    
    . E-Tattoos: Toward Functional but Imperceptible Interfacing with Human Skin. Chem Rev. 2024; 124(6):3220-3283.
    
          DOI: 10.1021/acs.chemrev.3c00626.
    
    
View
   
 
                                          
  13.
  
    Miyamoto A, Lee S, Cooray N, Lee S, Mori M, Matsuhisa N
    
    . Inflammation-free, gas-permeable, lightweight, stretchable on-skin electronics with nanomeshes. Nat Nanotechnol. 2017; 12(9):907-913.
    
          DOI: 10.1038/nnano.2017.125.
    
    
View
   
 
                                          
  14.
  
    Tian L, Zimmerman B, Akhtar A, Yu K, Moore M, Wu J
    
    . Large-area MRI-compatible epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat Biomed Eng. 2019; 3(3):194-205.
    
          DOI: 10.1038/s41551-019-0347-x.
    
    
View
   
 
                                          
  15.
  
    Taylor N, Machado-Moreira C
    
    . Regional variations in transepidermal water loss, eccrine sweat gland density, sweat secretion rates and electrolyte composition in resting and exercising humans. Extrem Physiol Med. 2013; 2(1):4.
          PMC: 3710196.
    
          DOI: 10.1186/2046-7648-2-4.
    
    
View
   
 
                                          
  16.
  
    Fang Y, Li Y, Li Y, Ding M, Xie J, Hu B
    
    . Solution-Processed Submicron Free-Standing, Conformal, Transparent, Breathable Epidermal Electrodes. ACS Appl Mater Interfaces. 2020; 12(21):23689-23696.
    
          DOI: 10.1021/acsami.0c04134.
    
    
View
   
 
                                          
  17.
  
    Wang Y, Lee S, Wang H, Jiang Z, Jimbo Y, Wang C
    
    . Robust, self-adhesive, reinforced polymeric nanofilms enabling gas-permeable dry electrodes for long-term application. Proc Natl Acad Sci U S A. 2021; 118(38).
          PMC: 8463786.
    
          DOI: 10.1073/pnas.2111904118.
    
    
View
   
 
                                          
  18.
  
    Geddes L, Valentinuzzi M
    
    . Temporal changes in electrode impedance while recording the electrocardiogram with "dry" electrodes. Ann Biomed Eng. 1973; 1(3):356-67.
    
          DOI: 10.1007/BF02407675.
    
    
View
   
 
                                          
  19.
  
    Searle A, Kirkup L
    
    . A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas. 2000; 21(2):271-83.
    
          DOI: 10.1088/0967-3334/21/2/307.
    
    
View
   
 
                                          
  20.
  
    Ferrari L, Sudha S, Tarantino S, Esposti R, Bolzoni F, Cavallari P
    
    . Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Adv Sci (Weinh). 2018; 5(3):1700771.
          PMC: 5867059.
    
          DOI: 10.1002/advs.201700771.
    
    
View