6.
Nian G, Kim J, Bao X, Suo Z
. Making Highly Elastic and Tough Hydrogels from Doughs. Adv Mater. 2022; 34(50):e2206577.
DOI: 10.1002/adma.202206577.
View
7.
Lee S, Kim S, Jeon K, Jeon J, Lee E, Jeon J
. A fabric-based wearable sensor for continuous monitoring of decubitus ulcer of subjects lying on a bed. Sci Rep. 2023; 13(1):5773.
PMC: 10082782.
DOI: 10.1038/s41598-023-33081-7.
View
8.
Sun T, Kurokawa T, Kuroda S, Ihsan A, Akasaki T, Sato K
. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013; 12(10):932-7.
DOI: 10.1038/nmat3713.
View
9.
Wang Y, Zhu L, Kong X, Lu H, Wang C, Huang Y
. Fabrication of an ion-enhanced low-temperature tolerant graphene/PAA/KCl hydrogel and its application for skin sensors. Nanoscale. 2023; 15(12):5938-5947.
DOI: 10.1039/d2nr04803e.
View
10.
Singh P, Singh J, Gupta B, Mishra M, Saurabh S, Singh A
. A novel DUF 3472 domain-containing fern protein impairs reproduction in Helicoverpa armigera. Int J Biol Macromol. 2024; 285:138117.
DOI: 10.1016/j.ijbiomac.2024.138117.
View
10.
Di X, Hou J, Yang M, Wu G, Sun P
. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission. Mater Horiz. 2022; 9(12):3057-3069.
DOI: 10.1039/d2mh00456a.
View
11.
Ullah R, Ara L, Khan M, Shah L, Akil H, Khan Z
. The development of anti-freezing and anti-evaporating conductive organohydrogel for flexible strain-sensing electronic devices. RSC Adv. 2024; 14(42):30886-30895.
PMC: 11428096.
DOI: 10.1039/d4ra04601c.
View
12.
Feng W, Wang Z
. Tailoring the Swelling-Shrinkable Behavior of Hydrogels for Biomedical Applications. Adv Sci (Weinh). 2023; 10(28):e2303326.
PMC: 10558674.
DOI: 10.1002/advs.202303326.
View
13.
Cao J, Liu X, Qiu J, Yue Z, Li Y, Xu Q
. Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat Commun. 2024; 15(1):1116.
PMC: 10847152.
DOI: 10.1038/s41467-024-45393-x.
View
14.
Qin Z, Yu X, Wu H, Li J, Lv H, Yang X
. Nonswellable and Tough Supramolecular Hydrogel Based on Strong Micelle Cross-Linkings. Biomacromolecules. 2019; 20(9):3399-3407.
DOI: 10.1021/acs.biomac.9b00666.
View
15.
Mishra A, Omoyeni T, Singh P, Anandakumar S, Tiwari A
. Trends in sustainable chitosan-based hydrogel technology for circular biomedical engineering: A review. Int J Biol Macromol. 2024; 276(Pt 1):133823.
DOI: 10.1016/j.ijbiomac.2024.133823.
View
16.
Dou X, Wang H, Yang F, Shen H, Wang X, Wu D
. One-Step Soaking Strategy toward Anti-Swelling Hydrogels with a Stiff "Armor". Adv Sci (Weinh). 2023; 10(9):e2206242.
PMC: 10037974.
DOI: 10.1002/advs.202206242.
View
17.
Yee M, Mubarak N, Khalid M, Abdullah E, Jagadish P
. Synthesis of polyvinyl alcohol (PVA) infiltrated MWCNTs buckypaper for strain sensing application. Sci Rep. 2018; 8(1):17295.
PMC: 6251925.
DOI: 10.1038/s41598-018-35638-3.
View
18.
Dai X, Zhang Y, Gao L, Bai T, Wang W, Cui Y
. A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv Mater. 2015; 27(23):3566-71.
DOI: 10.1002/adma.201500534.
View
19.
Kamata H, Akagi Y, Kayasuga-Kariya Y, Chung U, Sakai T
. "Nonswellable" hydrogel without mechanical hysteresis. Science. 2014; 343(6173):873-5.
DOI: 10.1126/science.1247811.
View