6.
Harpavat S, Garcia-Prats J, Anaya C, Brandt M, Lupo P, Finegold M
. Diagnostic Yield of Newborn Screening for Biliary Atresia Using Direct or Conjugated Bilirubin Measurements. JAMA. 2020; 323(12):1141-1150.
PMC: 7093763.
DOI: 10.1001/jama.2020.0837.
View
7.
Napolitano M, Franchi-Abella S, Damasio M, Augdal T, Avni F, Bruno C
. Practical approach to imaging diagnosis of biliary atresia, Part 1: prenatal ultrasound and magnetic resonance imaging, and postnatal ultrasound. Pediatr Radiol. 2020; 51(2):314-331.
DOI: 10.1007/s00247-020-04840-9.
View
8.
He F, Feng S, Xiu Y, Zhang Y, Wang Y, Zhang Z
. Dysmorphic Gallbladder Found on Prenatal Ultrasound as a Hint for Biliary Atresia. J Ultrasound Med. 2022; 42(6):1345-1351.
DOI: 10.1002/jum.16145.
View
9.
Moon M, Cho J, Kim J, Lee Y, Jung S, Lee M
. In utero development of the fetal gall bladder in the Korean population. Korean J Radiol. 2008; 9(1):54-8.
PMC: 2627174.
DOI: 10.3348/kjr.2008.9.1.54.
View
10.
Sendra-Balcells C, Campello V, Martin-Isla C, Vilades D, Descalzo M, Guala A
. Domain generalization in deep learning for contrast-enhanced imaging. Comput Biol Med. 2022; 149:106052.
DOI: 10.1016/j.compbiomed.2022.106052.
View
11.
Salomon L, Alfirevic Z, Berghella V, Bilardo C, Chalouhi G, da Silva Costa F
. ISUOG Practice Guidelines (updated): performance of the routine mid-trimester fetal ultrasound scan. Ultrasound Obstet Gynecol. 2022; 59(6):840-856.
DOI: 10.1002/uog.24888.
View
12.
Arnaout R, Curran L, Zhao Y, Levine J, Chinn E, Moon-Grady A
. An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease. Nat Med. 2021; 27(5):882-891.
PMC: 8380434.
DOI: 10.1038/s41591-021-01342-5.
View
13.
Lin M, He X, Guo H, He M, Zhang L, Xian J
. Use of real-time artificial intelligence in detection of abnormal image patterns in standard sonographic reference planes in screening for fetal intracranial malformations. Ultrasound Obstet Gynecol. 2021; 59(3):304-316.
DOI: 10.1002/uog.24843.
View
14.
Cai C, Wang S, Xu Y, Zhang W, Tang K, Ouyang Q
. Transfer Learning for Drug Discovery. J Med Chem. 2020; 63(16):8683-8694.
DOI: 10.1021/acs.jmedchem.9b02147.
View
15.
Zhou W, Yang Y, Yu C, Liu J, Duan X, Weng Z
. Ensembled deep learning model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. Nat Commun. 2021; 12(1):1259.
PMC: 7904842.
DOI: 10.1038/s41467-021-21466-z.
View
16.
Zhang Y, Hong D, McClement D, Oladosu O, Pridham G, Slaney G
. Grad-CAM helps interpret the deep learning models trained to classify multiple sclerosis types using clinical brain magnetic resonance imaging. J Neurosci Methods. 2021; 353:109098.
DOI: 10.1016/j.jneumeth.2021.109098.
View
17.
Harpavat S, Garcia-Prats J, Shneider B
. Newborn Bilirubin Screening for Biliary Atresia. N Engl J Med. 2016; 375(6):605-6.
DOI: 10.1056/NEJMc1601230.
View
18.
Chen L, He F, Zeng K, Wang B, Li J, Zhao D
. Differentiation of cystic biliary atresia and choledochal cysts using prenatal ultrasonography. Ultrasonography. 2021; 41(1):140-149.
PMC: 8696141.
DOI: 10.14366/usg.21028.
View
19.
Li J, Li Y, Tan J, Liu C
. It takes two: Dual Branch Augmentation Module for domain generalization. Neural Netw. 2024; 172:106094.
DOI: 10.1016/j.neunet.2023.106094.
View
20.
Arooj S, Atta-Ur-Rahman , Zubair M, Khan M, Alissa K, Khan M
. Breast Cancer Detection and Classification Empowered With Transfer Learning. Front Public Health. 2022; 10:924432.
PMC: 9289190.
DOI: 10.3389/fpubh.2022.924432.
View