» Articles » PMID: 40020185

Design Approaches That Utilize Ionic Interactions to Control Selectivity in Transition Metal Catalysis

Overview
Journal Chem Rev
Specialty Chemistry
Date 2025 Feb 28
PMID 40020185
Authors
Affiliations
Soon will be listed here.
Abstract

The attractive force between two oppositely charged ions can constitute a powerful design tool in selective catalysis. Enzymes make extensive use of ionic interactions alongside a variety of other noncovalent interactions; recent years have seen synthetic chemists begin to seriously explore these interactions in catalyst designs that also incorporate a reactive transition metal. In isolation, a single ionic interaction exhibits low directionality, but in many successful systems they exist alongside additional interactions which can provide a high degree of organization at the selectivity-determining transition state. Even in situations with a single key interaction, low directionality is not always detrimental, and can even be advantageous, conferring generality to a single catalyst. This Review explores design approaches that utilize ionic interactions to control selectivity in transition metal catalysis. It is divided into two halves: in the first, the ionic interaction occurs in the outer sphere of the metal complex, using a ligand which is charged or bound to an anion; in the second, the metal bears a formal charge, and the ionic interaction is with an associated counterion.