6.
Vajda S, Yueh C, Beglov D, Bohnuud T, Mottarella S, Xia B
. New additions to the ClusPro server motivated by CAPRI. Proteins. 2016; 85(3):435-444.
PMC: 5313348.
DOI: 10.1002/prot.25219.
View
7.
Xin Q, Niu H, Li Z, Zhang G, Hu L, Wang B
. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS One. 2013; 8(8):e72745.
PMC: 3744459.
DOI: 10.1371/journal.pone.0072745.
View
8.
Dhanda S, Gupta S, Vir P, Raghava G
. Prediction of IL4 inducing peptides. Clin Dev Immunol. 2014; 2013:263952.
PMC: 3893860.
DOI: 10.1155/2013/263952.
View
9.
Keynan Y, Becker M, Rueda Z, Bresler K, Kasper K
. Rapid human immunodeficiency virus disease progression is associated with human leukocyte antigen-B homozygocity and human leukocyte antigen-B51 in a cohort from Manitoba, Canada. Infect Dis (Lond). 2015; 47(7):447-52.
DOI: 10.3109/00365548.2015.1007474.
View
10.
Commandeur S, Lin M, van Meijgaarden K, Friggen A, Franken K, Drijfhout J
. Double- and monofunctional CD4⁺ and CD8⁺ T-cell responses to Mycobacterium tuberculosis DosR antigens and peptides in long-term latently infected individuals. Eur J Immunol. 2011; 41(10):2925-36.
DOI: 10.1002/eji.201141602.
View
11.
Bowie J, Luthy R, Eisenberg D
. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991; 253(5016):164-70.
DOI: 10.1126/science.1853201.
View
12.
Shiraz M, Lata S, Kumar P, Shankar U, Akif M
. Immunoinformatics analysis of antigenic epitopes and designing of a multi-epitope peptide vaccine from putative nitro-reductases of Mycobacterium tuberculosis DosR. Infect Genet Evol. 2021; 94:105017.
DOI: 10.1016/j.meegid.2021.105017.
View
13.
Arshad Dar H, Zaheer T, Shehroz M, Ullah N, Naz K, Muhammad S
. Immunoinformatics-Aided Design and Evaluation of a Potential Multi-Epitope Vaccine against . Vaccines (Basel). 2019; 7(3).
PMC: 6789656.
DOI: 10.3390/vaccines7030088.
View
14.
Sharma R, Rajput V, Jamal S, Grover A, Grover S
. An immunoinformatics approach to design a multi-epitope vaccine against Mycobacterium tuberculosis exploiting secreted exosome proteins. Sci Rep. 2021; 11(1):13836.
PMC: 8257786.
DOI: 10.1038/s41598-021-93266-w.
View
15.
Jiang F, Peng C, Cheng P, Wang J, Lian J, Gong W
. PP19128R, a Multiepitope Vaccine Designed to Prevent Latent Tuberculosis Infection, Induced Immune Responses and Assays. Vaccines (Basel). 2023; 11(4).
PMC: 10145841.
DOI: 10.3390/vaccines11040856.
View
16.
McMurry J, Sbai H, Gennaro M, Carter E, Martin W, De Groot A
. Analyzing Mycobacterium tuberculosis proteomes for candidate vaccine epitopes. Tuberculosis (Edinb). 2005; 85(1-2):95-105.
DOI: 10.1016/j.tube.2004.09.005.
View
17.
Zheng W, Zhang C, Li Y, Pearce R, Bell E, Zhang Y
. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Rep Methods. 2021; 1(3).
PMC: 8336924.
DOI: 10.1016/j.crmeth.2021.100014.
View
18.
Chukwudozie O, Gray C, Fagbayi T, Chukwuanukwu R, Oyebanji V, Bankole T
. Immuno-informatics design of a multimeric epitope peptide based vaccine targeting SARS-CoV-2 spike glycoprotein. PLoS One. 2021; 16(3):e0248061.
PMC: 7968690.
DOI: 10.1371/journal.pone.0248061.
View
19.
Bermudez L, Champsi J
. Infection with Mycobacterium avium induces production of interleukin-10 (IL-10), and administration of anti-IL-10 antibody is associated with enhanced resistance to infection in mice. Infect Immun. 1993; 61(7):3093-7.
PMC: 280968.
DOI: 10.1128/iai.61.7.3093-3097.1993.
View
20.
Haydel S, Clark-Curtiss J
. Global expression analysis of two-component system regulator genes during Mycobacterium tuberculosis growth in human macrophages. FEMS Microbiol Lett. 2004; 236(2):341-7.
DOI: 10.1016/j.femsle.2004.06.010.
View