6.
Groppe D, Bickel S, Keller C, Jain S, Hwang S, Harden C
. Dominant frequencies of resting human brain activity as measured by the electrocorticogram. Neuroimage. 2013; 79:223-33.
PMC: 4269223.
DOI: 10.1016/j.neuroimage.2013.04.044.
View
7.
de la Salle S, Choueiry J, Payumo M, Devlin M, Noel C, Abozmal A
. Transcranial Alternating Current Stimulation Alters Auditory Steady-State Oscillatory Rhythms and Their Cross-Frequency Couplings. Clin EEG Neurosci. 2023; 55(3):329-339.
PMC: 11020127.
DOI: 10.1177/15500594231179679.
View
8.
Escolano C, Olivan B, Lopez-Del-Hoyo Y, Garcia-Campayo J, Minguez J
. Double-blind single-session neurofeedback training in upper-alpha for cognitive enhancement of healthy subjects. Annu Int Conf IEEE Eng Med Biol Soc. 2013; 2012:4643-7.
DOI: 10.1109/EMBC.2012.6347002.
View
9.
Shi W, Yeh C, Hong Y
. Cross-Frequency Transfer Entropy Characterize Coupling of Interacting Nonlinear Oscillators in Complex Systems. IEEE Trans Biomed Eng. 2018; 66(2):521-529.
DOI: 10.1109/TBME.2018.2849823.
View
10.
Lee J, Whittington M, Kopell N
. Top-down beta rhythms support selective attention via interlaminar interaction: a model. PLoS Comput Biol. 2013; 9(8):e1003164.
PMC: 3738471.
DOI: 10.1371/journal.pcbi.1003164.
View
11.
LUBAR J, Shouse M
. EEG and behavioral changes in a hyperkinetic child concurrent with training of the sensorimotor rhythm (SMR): a preliminary report. Biofeedback Self Regul. 1976; 1(3):293-306.
DOI: 10.1007/BF01001170.
View
12.
Hyafil A
. Misidentifications of specific forms of cross-frequency coupling: three warnings. Front Neurosci. 2015; 9:370.
PMC: 4598949.
DOI: 10.3389/fnins.2015.00370.
View
13.
Gruzelier J
. Differential effects on mood of 12-15 (SMR) and 15-18 (beta1) Hz neurofeedback. Int J Psychophysiol. 2013; 93(1):112-5.
DOI: 10.1016/j.ijpsycho.2012.11.007.
View
14.
Bagherzadeh Y, Baldauf D, Pantazis D, Desimone R
. Alpha Synchrony and the Neurofeedback Control of Spatial Attention. Neuron. 2019; 105(3):577-587.e5.
DOI: 10.1016/j.neuron.2019.11.001.
View
15.
Prim J, Ahn S, Davila M, Alexander M, McCulloch K, Frohlich F
. Targeting the Autonomic Nervous System Balance in Patients with Chronic Low Back Pain Using Transcranial Alternating Current Stimulation: A Randomized, Crossover, Double-Blind, Placebo-Controlled Pilot Study. J Pain Res. 2019; 12:3265-3277.
PMC: 6912089.
DOI: 10.2147/JPR.S208030.
View
16.
Pimenta M, van Run C, De Fockert J, Gruzelier J
. Neurofeedback of SMR and Beta1 Frequencies: An Investigation of Learning Indices and Frequency-Specific Effects. Neuroscience. 2017; 378:211-224.
DOI: 10.1016/j.neuroscience.2017.07.056.
View
17.
Lisman J, Jensen O
. The θ-γ neural code. Neuron. 2013; 77(6):1002-16.
PMC: 3648857.
DOI: 10.1016/j.neuron.2013.03.007.
View
18.
ODoherty J
. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr Opin Neurobiol. 2004; 14(6):769-76.
DOI: 10.1016/j.conb.2004.10.016.
View
19.
Helfrich R, Schneider T, Rach S, Trautmann-Lengsfeld S, Engel A, Herrmann C
. Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol. 2014; 24(3):333-9.
DOI: 10.1016/j.cub.2013.12.041.
View
20.
Wischnewski M, Engelhardt M, Salehinejad M, Schutter D, Kuo M, Nitsche M
. NMDA Receptor-Mediated Motor Cortex Plasticity After 20 Hz Transcranial Alternating Current Stimulation. Cereb Cortex. 2018; 29(7):2924-2931.
DOI: 10.1093/cercor/bhy160.
View