6.
Rubin M, Bristow R, Thienger P, Dive C, Imielinski M
. Impact of Lineage Plasticity to and from a Neuroendocrine Phenotype on Progression and Response in Prostate and Lung Cancers. Mol Cell. 2020; 80(4):562-577.
PMC: 8399907.
DOI: 10.1016/j.molcel.2020.10.033.
View
7.
Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A
. The Genomic and Epigenomic Landscape of Double-Negative Metastatic Prostate Cancer. Cancer Res. 2023; 83(16):2763-2774.
PMC: 10425725.
DOI: 10.1158/0008-5472.CAN-23-0593.
View
8.
Ku S, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich Z
. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017; 355(6320):78-83.
PMC: 5367887.
DOI: 10.1126/science.aah4199.
View
9.
Mu P, Zhang Z, Benelli M, Karthaus W, Hoover E, Chen C
. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017; 355(6320):84-88.
PMC: 5247742.
DOI: 10.1126/science.aah4307.
View
10.
Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y
. Transdifferentiation as a Mechanism of Treatment Resistance in a Mouse Model of Castration-Resistant Prostate Cancer. Cancer Discov. 2017; 7(7):736-749.
PMC: 5501744.
DOI: 10.1158/2159-8290.CD-16-1174.
View
11.
Park J, Lee J, Sheu K, Wang L, Balanis N, Nguyen K
. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018; 362(6410):91-95.
PMC: 6414229.
DOI: 10.1126/science.aat5749.
View
12.
Aparicio A, Shen L, Tapia E, Lu J, Chen H, Zhang J
. Combined Tumor Suppressor Defects Characterize Clinically Defined Aggressive Variant Prostate Cancers. Clin Cancer Res. 2015; 22(6):1520-30.
PMC: 4794379.
DOI: 10.1158/1078-0432.CCR-15-1259.
View
13.
Corn P, Heath E, Zurita A, Ramesh N, Xiao L, Sei E
. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1-2 trial. Lancet Oncol. 2019; 20(10):1432-1443.
PMC: 6858999.
DOI: 10.1016/S1470-2045(19)30408-5.
View
14.
Cyrta J, Augspach A, Filippo M, Prandi D, Thienger P, Benelli M
. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun. 2020; 11(1):5549.
PMC: 7642293.
DOI: 10.1038/s41467-020-19328-1.
View
15.
Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R
. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2021; 601(7893):434-439.
PMC: 8770127.
DOI: 10.1038/s41586-021-04246-z.
View
16.
Adams E, Karthaus W, Hoover E, Liu D, Gruet A, Zhang Z
. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019; 571(7765):408-412.
PMC: 6661172.
DOI: 10.1038/s41586-019-1318-9.
View
17.
Baca S, Takeda D, Seo J, Hwang J, Ku S, Arafeh R
. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021; 12(1):1979.
PMC: 8010057.
DOI: 10.1038/s41467-021-22139-7.
View
18.
Han M, Li F, Zhang Y, Dai P, He J, Li Y
. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell. 2022; 40(11):1306-1323.e8.
DOI: 10.1016/j.ccell.2022.10.011.
View
19.
Nouruzi S, Ganguli D, Tabrizian N, Kobelev M, Sivak O, Namekawa T
. ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun. 2022; 13(1):2282.
PMC: 9046280.
DOI: 10.1038/s41467-022-29963-5.
View
20.
Chen C, Tran W, Song K, Sugimoto T, Obusan M, Wang L
. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell. 2023; 41(12):2066-2082.e9.
PMC: 10878415.
DOI: 10.1016/j.ccell.2023.10.009.
View