6.
Blum A
. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2016; 40(1):4-10.
DOI: 10.1111/pce.12800.
View
7.
Ma Y, Dias M, Freitas H
. Drought and Salinity Stress Responses and Microbe-Induced Tolerance in Plants. Front Plant Sci. 2020; 11:591911.
PMC: 7691295.
DOI: 10.3389/fpls.2020.591911.
View
8.
Karimian Z, Samiei L
. ZnO nanoparticles efficiently enhance drought tolerance in through altering physiological, biochemical and elemental contents. Front Plant Sci. 2023; 14:1063618.
PMC: 10036906.
DOI: 10.3389/fpls.2023.1063618.
View
9.
Ahmed E, Shoala T, Abdelkhalik A, El-Garhy H, Ismail I, Farrag A
. Nanoinhibitory Impacts of Salicylic Acid, Glycyrrhizic Acid Ammonium Salt, and Boric Acid Nanoparticles against Phytoplasma Associated with Faba Bean. Molecules. 2022; 27(5).
PMC: 8911656.
DOI: 10.3390/molecules27051467.
View
10.
El-Saadony M, Saad A, Soliman S, Salem H, Desoky E, Babalghith A
. Role of Nanoparticles in Enhancing Crop Tolerance to Abiotic Stress: A Comprehensive Review. Front Plant Sci. 2022; 13:946717.
PMC: 9670308.
DOI: 10.3389/fpls.2022.946717.
View
11.
AEBI H
. Catalase in vitro. Methods Enzymol. 1984; 105:121-6.
DOI: 10.1016/s0076-6879(84)05016-3.
View
12.
Moran R, Porath D
. Chlorophyll determination in intact tissues using n,n-dimethylformamide. Plant Physiol. 1980; 65(3):478-9.
PMC: 440358.
DOI: 10.1104/pp.65.3.478.
View
13.
Zulfiqar F, Akram N, Ashraf M
. Osmoprotection in plants under abiotic stresses: new insights into a classical phenomenon. Planta. 2019; 251(1):3.
DOI: 10.1007/s00425-019-03293-1.
View
14.
Ghani M, Saleem S, Rather S, Rehmani M, Alamri S, Rajput V
. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere. 2021; 289:133202.
DOI: 10.1016/j.chemosphere.2021.133202.
View
15.
Paul K, Pauk J, Kondic-Spika A, Grausgruber H, Allahverdiyev T, Sass L
. Co-occurrence of Mild Salinity and Drought Synergistically Enhances Biomass and Grain Retardation in Wheat. Front Plant Sci. 2019; 10:501.
PMC: 6503295.
DOI: 10.3389/fpls.2019.00501.
View
16.
Rukhsar-Ul-Haq , Kausar A, Hussain S, Javed T, Zafar S, Anwar S
. Zinc oxide nanoparticles as potential hallmarks for enhancing drought stress tolerance in wheat seedlings. Plant Physiol Biochem. 2023; 195:341-350.
DOI: 10.1016/j.plaphy.2023.01.014.
View
17.
Anderson M
. Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 1985; 113:548-55.
DOI: 10.1016/s0076-6879(85)13073-9.
View
18.
Ur Rehman H, Alharby H, Bamagoos A, Abdelhamid M, Rady M
. Sequenced application of glutathione as an antioxidant with an organic biostimulant improves physiological and metabolic adaptation to salinity in wheat. Plant Physiol Biochem. 2020; 158:43-52.
DOI: 10.1016/j.plaphy.2020.11.041.
View
19.
Semida W, Abdelkhalik A, Mohamed G, Abd El-Mageed T, Abd El-Mageed S, Rady M
. Foliar Application of Zinc Oxide Nanoparticles Promotes Drought Stress Tolerance in Eggplant ( L.). Plants (Basel). 2021; 10(2).
PMC: 7926631.
DOI: 10.3390/plants10020421.
View
20.
Abd El-Mageed T, Gyushi M, Hemida K, El-Saadony M, Abd El-Mageed S, Abdalla H
. Coapplication of Effective Microorganisms and Nanomagnesium Boosts the Agronomic, Physio-Biochemical, Osmolytes, and Antioxidants Defenses Against Salt Stress in . Front Plant Sci. 2022; 13:883274.
PMC: 9326395.
DOI: 10.3389/fpls.2022.883274.
View