Smooth Moves: Comparing Log Dimensionless Jerk Metrics from Body Center of Mass Trajectory and Wearable Sensor Acceleration During Walking
Overview
Affiliations
Movement smoothness is a critical metric for evaluating motor control and sensorimotor impairments, with increasing relevance in neurorehabilitation and everyday functional assessments. This study investigates the correlation between two smoothness metrics (Log Dimensionless Jerk): LDLJV, derived from body center of mass (BCoM) trajectories using a gold-standard stereophotogrammetric system, and LDLJA, calculated from acceleration data recorded via an inertial measurement unit (IMU) placed at the L1-L2 level. Ten healthy adults (six men and four women; height: 1.71 ± 0.08 m; body mass: 68.2 ± 10.2 kg; age: 34.5 ± 8.5 years) walked on a treadmill at seven different speeds, with stride-specific data analyzed to compute smoothness indices for three anatomical components (antero-posterior, medio-lateral, cranio-caudal). Concordance between the metrics was evaluated using Bland-Altman analysis, Spearman's correlation, and the mean absolute percentage error. The results revealed weak correlations and substantial biases across all components and speeds, reflecting inherent differences between IMU- and BCoM-derived data. Correcting biases improved alignment but did not eliminate discrepancies. The findings highlight that LDLJA captures only localized trunk accelerations, whereas BCoM-derived LDLJV approximates whole-body dynamics, making direct substitution infeasible. This study emphasizes the need for careful interpretation of IMU-based metrics and contributes to refining their application in real-world gait analyses.