6.
Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T
. Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplant. 2009; 24(7):2051-8.
DOI: 10.1093/ndt/gfn757.
View
7.
De Smet R, Van Kaer J, Van Vlem B, De Cubber A, Brunet P, Lameire N
. Toxicity of free p-cresol: a prospective and cross-sectional analysis. Clin Chem. 2003; 49(3):470-8.
DOI: 10.1373/49.3.470.
View
8.
Joshi S, McMacken M, Kalantar-Zadeh K
. Plant-Based Diets for Kidney Disease: A Guide for Clinicians. Am J Kidney Dis. 2020; 77(2):287-296.
DOI: 10.1053/j.ajkd.2020.10.003.
View
9.
Eknoyan G, Beck G, Cheung A, Daugirdas J, Greene T, Kusek J
. Effect of dialysis dose and membrane flux in maintenance hemodialysis. N Engl J Med. 2002; 347(25):2010-9.
DOI: 10.1056/NEJMoa021583.
View
10.
Ryckelynck J, Ficheux M, Castrale C, Henri P, Lobbedez T
. Adequacy in peritoneal dialysis. Contrib Nephrol. 2012; 178:195-199.
DOI: 10.1159/000337852.
View
11.
Niwa T, Aoyama I, Takayama F, Tsukushi S, Miyazaki T, Owada A
. Urinary indoxyl sulfate is a clinical factor that affects the progression of renal failure. Miner Electrolyte Metab. 1999; 25(1-2):118-22.
DOI: 10.1159/000057433.
View
12.
He X, Jiang H, Gao F, Liang S, Wei M, Chen L
. Indoxyl sulfate-induced calcification of vascular smooth muscle cells via the PI3K/Akt/NF-κB signaling pathway. Microsc Res Tech. 2019; 82(12):2000-2006.
DOI: 10.1002/jemt.23369.
View
13.
Goto S, Fujii H, Hamada Y, Yoshiya K, Fukagawa M
. Association between indoxyl sulfate and skeletal resistance in hemodialysis patients. Ther Apher Dial. 2010; 14(4):417-23.
DOI: 10.1111/j.1744-9987.2010.00813.x.
View
14.
Andre C, Bennis Y, Titeca-Beauport D, Caillard P, Cluet Y, Kamel S
. Two rapid, accurate liquid chromatography tandem mass spectrometry methods for the quantification of seven uremic toxins: An application for describing their accumulation kinetic profile in a context of acute kidney injury. J Chromatogr B Analyt Technol Biomed Life Sci. 2020; 1152:122234.
DOI: 10.1016/j.jchromb.2020.122234.
View
15.
Krishnan M, Tam P, Wu G, Breborowicz A, Oreopoulos D
. Glucose degradation products (GDP's) and peritoneal changes in patients on chronic peritoneal dialysis: will new dialysis solutions prevent these changes?. Int Urol Nephrol. 2005; 37(2):409-18.
DOI: 10.1007/s11255-004-1392-1.
View
16.
. Adequacy of dialysis and nutrition in continuous peritoneal dialysis: association with clinical outcomes. Canada-USA (CANUSA) Peritoneal Dialysis Study Group. J Am Soc Nephrol. 1996; 7(2):198-207.
DOI: 10.1681/ASN.V72198.
View
17.
Davani-Davari D, Negahdaripour M, Karimzadeh I, Seifan M, Mohkam M, Masoumi S
. Prebiotics: Definition, Types, Sources, Mechanisms, and Clinical Applications. Foods. 2019; 8(3).
PMC: 6463098.
DOI: 10.3390/foods8030092.
View
18.
Niwa T
. Organic acids and the uremic syndrome: protein metabolite hypothesis in the progression of chronic renal failure. Semin Nephrol. 1996; 16(3):167-82.
View
19.
Sun C, Young G, Hsieh Y, Chen Y, Wu M, Wu V
. Protein-bound uremic toxins induce tissue remodeling by targeting the EGF receptor. J Am Soc Nephrol. 2014; 26(2):281-90.
PMC: 4310659.
DOI: 10.1681/ASN.2014010021.
View
20.
Schepers E, Meert N, Glorieux G, Goeman J, Van der Eycken J, Vanholder R
. P-cresylsulphate, the main in vivo metabolite of p-cresol, activates leucocyte free radical production. Nephrol Dial Transplant. 2006; 22(2):592-6.
DOI: 10.1093/ndt/gfl584.
View