6.
Kamijo M, Basso M, Cherian P, Hohman T, Sima A
. Galactosemia produces ARI-preventable nodal changes similar to those of diabetic neuropathy. Diabetes Res Clin Pract. 1994; 25(2):117-29.
DOI: 10.1016/0168-8227(94)90037-x.
View
7.
Mizisin A, Calcutt N, DiStefano P, Acheson A, Longo F
. Aldose reductase inhibition increases CNTF-like bioactivity and protein in sciatic nerves from galactose-fed and normal rats. Diabetes. 1997; 46(4):647-52.
DOI: 10.2337/diab.46.4.647.
View
8.
Mizisin A, Powell H
. Schwann cell changes induced as early as one week after galactose intoxication. Acta Neuropathol. 1997; 93(6):611-8.
DOI: 10.1007/s004010050659.
View
9.
Conte F, van Buuringen N, Voermans N, Lefeber D
. Galactose in human metabolism, glycosylation and congenital metabolic diseases: Time for a closer look. Biochim Biophys Acta Gen Subj. 2021; 1865(8):129898.
DOI: 10.1016/j.bbagen.2021.129898.
View
10.
Antony P, Vijayan R
. Identification of Novel Aldose Reductase Inhibitors from Spices: A Molecular Docking and Simulation Study. PLoS One. 2015; 10(9):e0138186.
PMC: 4575143.
DOI: 10.1371/journal.pone.0138186.
View
11.
Matsumoto T, Ono Y, Kurono M, Kuromiya A, Nakamura K, Bril V
. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J Pharmacol Sci. 2008; 107(3):231-7.
DOI: 10.1254/jphs.08061fp.
View
12.
Ota A, Kakehashi A, Toyoda F, Kinoshita N, Shinmura M, Takano H
. Effects of long-term treatment with ranirestat, a potent aldose reductase inhibitor, on diabetic cataract and neuropathy in spontaneously diabetic torii rats. J Diabetes Res. 2013; 2013:175901.
PMC: 3647549.
DOI: 10.1155/2013/175901.
View
13.
Cortese A, Zhu Y, Rebelo A, Negri S, Courel S, Abreu L
. Biallelic mutations in SORD cause a common and potentially treatable hereditary neuropathy with implications for diabetes. Nat Genet. 2020; 52(5):473-481.
PMC: 8353599.
DOI: 10.1038/s41588-020-0615-4.
View
14.
Yako H, Niimi N, Takaku S, Kato A, Kato K, Sango K
. Role of Exogenous Pyruvate in Maintaining Adenosine Triphosphate Production under High-Glucose Conditions through PARP-Dependent Glycolysis and PARP-Independent Tricarboxylic Acid Cycle. Int J Mol Sci. 2024; 25(20).
PMC: 11508270.
DOI: 10.3390/ijms252011089.
View
15.
Watabe K, Fukuda T, Tanaka J, Honda H, Toyohara K, Sakai O
. Spontaneously immortalized adult mouse Schwann cells secrete autocrine and paracrine growth-promoting activities. J Neurosci Res. 1995; 41(2):279-90.
DOI: 10.1002/jnr.490410215.
View
16.
Mulhern M, Madson C, Danford A, Ikesugi K, Kador P, Shinohara T
. The unfolded protein response in lens epithelial cells from galactosemic rat lenses. Invest Ophthalmol Vis Sci. 2006; 47(9):3951-9.
DOI: 10.1167/iovs.06-0193.
View
17.
Iyer S, Sam F, DiPrimio N, Preston G, Verheijen J, Murthy K
. Repurposing the aldose reductase inhibitor and diabetic neuropathy drug epalrestat for the congenital disorder of glycosylation PMM2-CDG. Dis Model Mech. 2019; 12(11).
PMC: 6899038.
DOI: 10.1242/dmm.040584.
View
18.
Shi W, Xu G, Gao Y, Zhao J, Liu T, Zhao J
. Novel role for epalrestat: protecting against NLRP3 inflammasome-driven NASH by targeting aldose reductase. J Transl Med. 2023; 21(1):700.
PMC: 10560438.
DOI: 10.1186/s12967-023-04380-4.
View
19.
Chen W, Caston R, Balakrishnan B, Siddiqi A, Parmar K, Tang M
. Assessment of ataxia phenotype in a new mouse model of galactose-1 phosphate uridylyltransferase (GALT) deficiency. J Inherit Metab Dis. 2016; 40(1):131-137.
PMC: 5203948.
DOI: 10.1007/s10545-016-9993-2.
View
20.
Lee E, Chen S, Leong L, Tulloch J, Yu C
. RNA Transcription in Alzheimer's Disease Brain and Its Implication in Mitochondrial Dysfunction. Genes (Basel). 2021; 12(6).
PMC: 8226536.
DOI: 10.3390/genes12060871.
View