6.
Salati S, DImporzano G, Menin B, Veronesi D, Scaglia B, Abbruscato P
. Mixotrophic cultivation of Chlorella for local protein production using agro-food by-products. Bioresour Technol. 2017; 230:82-89.
DOI: 10.1016/j.biortech.2017.01.030.
View
7.
Russo N, Ballotta M, Usai L, Torre S, Giordano M, Fais G
. Mixotrophic Cultivation of (Spirulina) under Salt Stress: Effect on Biomass Composition, FAME Profile and Phycocyanin Content. Mar Drugs. 2024; 22(9).
PMC: 11433411.
DOI: 10.3390/md22090381.
View
8.
Shayesteh H, Laird D, Hughes L, Nematollahi M, Kakhki A, Moheimani N
. Co-Producing Phycocyanin and Bioplastic in Using Carbon-Rich Wastewater. BioTech (Basel). 2023; 12(3).
PMC: 10366904.
DOI: 10.3390/biotech12030049.
View
9.
Delcheva G, Stefanova K, Stankova T
. Ceramides-Emerging Biomarkers of Lipotoxicity in Obesity, Diabetes, Cardiovascular Diseases, and Inflammation. Diseases. 2024; 12(9).
PMC: 11443555.
DOI: 10.3390/diseases12090195.
View
10.
Youssef A, Gomaa M, Mohamed A, El-Shanawany A
. Enhancement of biomass productivity and biochemical composition of alkaliphilic microalgae by mixotrophic cultivation using cheese whey for biofuel production. Environ Sci Pollut Res Int. 2024; 31(30):42875-42888.
PMC: 11222269.
DOI: 10.1007/s11356-024-33877-8.
View
11.
Slavov A
. General Characteristics and Treatment Possibilities of
Dairy Wastewater - A Review. Food Technol Biotechnol. 2017; 55(1):14-28.
PMC: 5434364.
DOI: 10.17113/ftb.55.01.17.4520.
View
12.
Villaro S, Jimenez-Marquez S, Musari E, Bermejo R, Lafarga T
. Production of enzymatic hydrolysates with in vitro antioxidant, antihypertensive, and antidiabetic properties from proteins derived from Arthrospira platensis. Food Res Int. 2023; 163:112270.
DOI: 10.1016/j.foodres.2022.112270.
View
13.
Sar T, Harirchi S, Ramezani M, Bulkan G, Akbas M, Pandey A
. Potential utilization of dairy industries by-products and wastes through microbial processes: A critical review. Sci Total Environ. 2021; 810:152253.
DOI: 10.1016/j.scitotenv.2021.152253.
View
14.
Udayan A, Pandey A, Sirohi R, Sreekumar N, Sang B, Sim S
. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochem Rev. 2022; :1-28.
PMC: 8783767.
DOI: 10.1007/s11101-021-09784-y.
View
15.
Ravi Kiran B, Venkata Mohan S
. Microalgal Cell Biofactory-Therapeutic, Nutraceutical and Functional Food Applications. Plants (Basel). 2021; 10(5).
PMC: 8143517.
DOI: 10.3390/plants10050836.
View
16.
Liu Y, Ren X, Fan C, Wu W, Zhang W, Wang Y
. Health Benefits, Food Applications, and Sustainability of Microalgae-Derived N-3 PUFA. Foods. 2022; 11(13).
PMC: 9265382.
DOI: 10.3390/foods11131883.
View
17.
Novoveska L, Nielsen S, Eroldogan O, Haznedaroglu B, Rinkevich B, Fazi S
. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar Drugs. 2023; 21(8).
PMC: 10455696.
DOI: 10.3390/md21080445.
View
18.
Conde T, Neves B, Couto D, Melo T, Neves B, Costa M
. Microalgae as Sustainable Bio-Factories of Healthy Lipids: Evaluating Fatty Acid Content and Antioxidant Activity. Mar Drugs. 2021; 19(7).
PMC: 8307217.
DOI: 10.3390/md19070357.
View
19.
Perna M, Hewlings S
. Saturated Fatty Acid Chain Length and Risk of Cardiovascular Disease: A Systematic Review. Nutrients. 2023; 15(1).
PMC: 9823926.
DOI: 10.3390/nu15010030.
View
20.
Zhu J, Guo X, Zhao K, Chen X, Zhao X, Yang Z
. Comparative Analysis of Pretreatment Methods for Fruit Waste Valorization in Cultivation: Impacts on Biomass, β-1,3-Glucan Production, and Photosynthetic Efficiency. Foods. 2024; 13(21).
PMC: 11545038.
DOI: 10.3390/foods13213439.
View