6.
Abreu R, Jorge J, Leal A, Koenig T, Figueiredo P
. EEG Microstates Predict Concurrent fMRI Dynamic Functional Connectivity States. Brain Topogr. 2020; 34(1):41-55.
DOI: 10.1007/s10548-020-00805-1.
View
7.
Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C
. MEG and EEG data analysis with MNE-Python. Front Neurosci. 2014; 7:267.
PMC: 3872725.
DOI: 10.3389/fnins.2013.00267.
View
8.
Merikangas K, Akiskal H, Angst J, Greenberg P, Hirschfeld R, Petukhova M
. Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry. 2007; 64(5):543-52.
PMC: 1931566.
DOI: 10.1001/archpsyc.64.5.543.
View
9.
Colombo F, Calesella F, Mazza M, Melloni E, Morelli M, Scotti G
. Machine learning approaches for prediction of bipolar disorder based on biological, clinical and neuropsychological markers: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2022; 135:104552.
DOI: 10.1016/j.neubiorev.2022.104552.
View
10.
Rahul J, Sharma D, Sharma L, Nanda U, Sarkar A
. A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning. Front Hum Neurosci. 2024; 18:1347082.
PMC: 10899326.
DOI: 10.3389/fnhum.2024.1347082.
View
11.
Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J
. Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol. 2008; 119(6):1232-41.
DOI: 10.1016/j.clinph.2008.01.104.
View
12.
Insel T
. Rethinking schizophrenia. Nature. 2010; 468(7321):187-93.
DOI: 10.1038/nature09552.
View
13.
Frank E, Nimgaonkar V, Phillips M, Kupfer D
. All the world's a (clinical) stage: rethinking bipolar disorder from a longitudinal perspective. Mol Psychiatry. 2014; 20(1):23-31.
PMC: 4303542.
DOI: 10.1038/mp.2014.71.
View
14.
Demyttenaere K, Mortier P, Kiekens G, Bruffaerts R
. Is there enough "interest in and pleasure in" the concept of depression? The development of the Leuven Affect and Pleasure Scale (LAPS). CNS Spectr. 2017; 24(2):265-274.
DOI: 10.1017/S1092852917000578.
View
15.
Khaleghi A, Sheikhani A, Mohammadi M, Moti Nasrabadi A, Vand S, Zarafshan H
. EEG classification of adolescents with type I and type II of bipolar disorder. Australas Phys Eng Sci Med. 2015; 38(4):551-9.
DOI: 10.1007/s13246-015-0375-0.
View
16.
Fernandez A, Gomez C, Hornero R, Lopez-Ibor J
. Complexity and schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 45:267-76.
DOI: 10.1016/j.pnpbp.2012.03.015.
View
17.
Parnas J, Moller P, Kircher T, Thalbitzer J, Jansson L, Handest P
. EASE: Examination of Anomalous Self-Experience. Psychopathology. 2005; 38(5):236-58.
DOI: 10.1159/000088441.
View
18.
Ibanez-Molina A, Iglesias-Parro S, Soriano M, Aznarte J
. Multiscale Lempel-Ziv complexity for EEG measures. Clin Neurophysiol. 2014; 126(3):541-8.
DOI: 10.1016/j.clinph.2014.07.012.
View
19.
Ravan M, Noroozi A, Sanchez M, Borden L, Alam N, Flor-Henry P
. Discriminating between bipolar and major depressive disorder using a machine learning approach and resting-state EEG data. Clin Neurophysiol. 2022; 146:30-39.
DOI: 10.1016/j.clinph.2022.11.014.
View
20.
Warbrick T
. Simultaneous EEG-fMRI: What Have We Learned and What Does the Future Hold?. Sensors (Basel). 2022; 22(6).
PMC: 8952790.
DOI: 10.3390/s22062262.
View