6.
Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A
. Comprehensive review of the basic chemical behaviours, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J Hazard Mater. 2020; 397:122720.
DOI: 10.1016/j.jhazmat.2020.122720.
View
7.
Uraguchi S, Fujiwara T
. Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice (N Y). 2014; 5(1):5.
PMC: 3834507.
DOI: 10.1186/1939-8433-5-5.
View
8.
Asgher M, Sehar Z, Rehaman A, Rashid S, Ahmed S, Per T
. Exogenously-applied L-glutamic acid protects photosynthetic functions and enhances arsenic tolerance through increased nitrogen assimilation and antioxidant capacity in rice (Oryza sativa L.). Environ Pollut. 2022; 301:119008.
DOI: 10.1016/j.envpol.2022.119008.
View
9.
Tsao G, Zheng Y, Lu J, Gong C
. Adsorption of heavy metal ions by immobilized phytic acid. Appl Biochem Biotechnol. 1997; 63-65:731-41.
DOI: 10.1007/BF02920471.
View
10.
Ren H, Li B, Neckenig M, Wu D, Li Y, Ma Y
. Efficient lead ion removal from water by a novel chitosan gel-based sorbent modified with glutamic acid ionic liquid. Carbohydr Polym. 2019; 207:737-746.
DOI: 10.1016/j.carbpol.2018.12.043.
View
11.
Senila M, Levei E, Cadar O, Senila L, Roman M, Puskas F
. Assessment of Availability and Human Health Risk Posed by Arsenic Contaminated Well Waters from Timis-Bega Area, Romania. J Anal Methods Chem. 2017; 2017:3037651.
PMC: 5662826.
DOI: 10.1155/2017/3037651.
View
12.
Demidchik V, Maathuis F
. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol. 2007; 175(3):387-404.
DOI: 10.1111/j.1469-8137.2007.02128.x.
View
13.
Xue W, Zhang C, Wang P, Wang C, Huang Y, Zhang X
. Rice vegetative organs alleviate cadmium toxicity by altering the chemical forms of cadmium and increasing the ratio of calcium to manganese. Ecotoxicol Environ Saf. 2019; 184:109640.
DOI: 10.1016/j.ecoenv.2019.109640.
View
14.
Khanam R, Hazra G, Ghosh Bag A, Kulsum P, Chatterjee N, Shukla A
. Risk Assessment of Arsenic Toxicity Through Groundwater-Soil-Rice System in Maldah District, Bengal Delta Basin, India. Arch Environ Contam Toxicol. 2021; 81(3):438-448.
DOI: 10.1007/s00244-021-00883-7.
View
15.
Yuan K, Wang C, Zhang C, Huang Y, Wang P, Liu Z
. Rice grains alleviate cadmium toxicity by expending glutamate and increasing manganese in the cadmium contaminated farmland. Environ Pollut. 2020; 262:114236.
DOI: 10.1016/j.envpol.2020.114236.
View
16.
Vatsa P, Chiltz A, Bourque S, Wendehenne D, Garcia-Brugger A, Pugin A
. Involvement of putative glutamate receptors in plant defence signaling and NO production. Biochimie. 2011; 93(12):2095-101.
DOI: 10.1016/j.biochi.2011.04.006.
View
17.
Cao Y, Sun D, Ai H, Mei H, Liu X, Sun S
. Knocking Out OsPT4 Gene Decreases Arsenate Uptake by Rice Plants and Inorganic Arsenic Accumulation in Rice Grains. Environ Sci Technol. 2017; 51(21):12131-12138.
DOI: 10.1021/acs.est.7b03028.
View
18.
Kong D, Hu H, Okuma E, Lee Y, Lee H, Munemasa S
. L-Met Activates Arabidopsis GLR Ca Channels Upstream of ROS Production and Regulates Stomatal Movement. Cell Rep. 2016; 17(10):2553-2561.
DOI: 10.1016/j.celrep.2016.11.015.
View
19.
Feng X, Han L, Chao D, Liu Y, Zhang Y, Wang R
. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. J Hazard Mater. 2017; 331:246-256.
DOI: 10.1016/j.jhazmat.2017.02.041.
View
20.
Xue W, Wang P, Tang L, Zhang C, Wang C, Huang Y
. Citric acid inhibits Cd uptake by improving the preferential transport of Mn and triggering the defense response of amino acids in grains. Ecotoxicol Environ Saf. 2021; 211:111921.
DOI: 10.1016/j.ecoenv.2021.111921.
View