6.
Das N, Topalovic M, Janssens W
. Artificial intelligence in diagnosis of obstructive lung disease: current status and future potential. Curr Opin Pulm Med. 2017; 24(2):117-123.
DOI: 10.1097/MCP.0000000000000459.
View
7.
Lang K, Josefsson V, Larsson A, Larsson S, Hogberg C, Sartor H
. Artificial intelligence-supported screen reading versus standard double reading in the Mammography Screening with Artificial Intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded,.... Lancet Oncol. 2023; 24(8):936-944.
DOI: 10.1016/S1470-2045(23)00298-X.
View
8.
Becker A, Marcon M, Ghafoor S, Wurnig M, Frauenfelder T, Boss A
. Deep Learning in Mammography: Diagnostic Accuracy of a Multipurpose Image Analysis Software in the Detection of Breast Cancer. Invest Radiol. 2017; 52(7):434-440.
DOI: 10.1097/RLI.0000000000000358.
View
9.
Yoon J, Strand F, Baltzer P, Conant E, Gilbert F, Lehman C
. Standalone AI for Breast Cancer Detection at Screening Digital Mammography and Digital Breast Tomosynthesis: A Systematic Review and Meta-Analysis. Radiology. 2023; 307(5):e222639.
PMC: 10315526.
DOI: 10.1148/radiol.222639.
View
10.
Dang L, Chazard E, Poncelet E, Serb T, Rusu A, Pauwels X
. Impact of artificial intelligence in breast cancer screening with mammography. Breast Cancer. 2022; 29(6):967-977.
PMC: 9587927.
DOI: 10.1007/s12282-022-01375-9.
View
11.
Schaffter T, Buist D, Lee C, Nikulin Y, Ribli D, Guan Y
. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw Open. 2020; 3(3):e200265.
PMC: 7052735.
DOI: 10.1001/jamanetworkopen.2020.0265.
View
12.
Taylor C, Monga N, Johnson C, Hawley J, Patel M
. Artificial Intelligence Applications in Breast Imaging: Current Status and Future Directions. Diagnostics (Basel). 2023; 13(12).
PMC: 10296832.
DOI: 10.3390/diagnostics13122041.
View
13.
Yala A, Mikhael P, Strand F, Lin G, Satuluru S, Kim T
. Multi-Institutional Validation of a Mammography-Based Breast Cancer Risk Model. J Clin Oncol. 2021; 40(16):1732-1740.
PMC: 9148689.
DOI: 10.1200/JCO.21.01337.
View
14.
Stang A
. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010; 25(9):603-5.
DOI: 10.1007/s10654-010-9491-z.
View
15.
Lee C, Elmore J
. Cancer Risk Prediction Paradigm Shift: Using Artificial Intelligence to Improve Performance and Health Equity. J Natl Cancer Inst. 2022; 114(10):1317-1319.
PMC: 9552274.
DOI: 10.1093/jnci/djac143.
View
16.
Syed A, Zoga A
. Artificial Intelligence in Radiology: Current Technology and Future Directions. Semin Musculoskelet Radiol. 2018; 22(5):540-545.
DOI: 10.1055/s-0038-1673383.
View
17.
Dembrower K, Crippa A, Colon E, Eklund M, Strand F
. Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study. Lancet Digit Health. 2023; 5(10):e703-e711.
DOI: 10.1016/S2589-7500(23)00153-X.
View
18.
Shieh Y, Eklund M, Sawaya G, Black W, Kramer B, Esserman L
. Population-based screening for cancer: hope and hype. Nat Rev Clin Oncol. 2016; 13(9):550-65.
PMC: 6585415.
DOI: 10.1038/nrclinonc.2016.50.
View
19.
Chen S, Cao Z, Prettner K, Kuhn M, Yang J, Jiao L
. Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories From 2020 to 2050. JAMA Oncol. 2023; 9(4):465-472.
PMC: 9951101.
DOI: 10.1001/jamaoncol.2022.7826.
View
20.
Arefan D, Mohamed A, Berg W, Zuley M, Sumkin J, Wu S
. Deep learning modeling using normal mammograms for predicting breast cancer risk. Med Phys. 2019; 47(1):110-118.
PMC: 6980268.
DOI: 10.1002/mp.13886.
View