Multiple Scattering-Enhanced Fluorescence Within Randomly Oriented Low-Index Polymer Nanofiber Sensors
Overview
Authors
Affiliations
Fluorescence enhancement technologies play a crucial role in biological and chemical sensors. Currently, effective fluorescence sensors primarily rely on noble metals and high-index dielectric nanostructures. While effective, they are plagued by optical losses and complex fabrication processes. In contrast, low-index material nanostructures offer significant advantages, including the absence of optical losses, ease of fabrication, and cost-effectiveness, but they face the challenge of weaker electric field enhancement. Here, we designed a low-index, randomly oriented polyvinyl acetate (PVAc) nanofiber sensor via scalable electrospinning, enabling multiple scattering within the disordered nanofibers and resulting in an impressive surface-enhanced fluorescence factor of 1170. This sensor achieves a detection limit for rhodamine 6G as low as 7.24 fM, outperforming the reported fluorescence biosensors. Further results of photoluminescence decay dynamics and random lasing validate the effectiveness of multiple scattering in enhancing fluorescence within the polymer nanofiber sensor. With its excellent performance and scalable production process, this randomly oriented, low-index polymer nanofiber sensor offers a promising new pathway for efficient surface-enhanced fluorescence based on multiple scattering. Furthermore, PVAc nanofibers can be extended to other low-index materials capable of forming randomly oriented nanostructures, offering significant potential for cost-effective, high-performance fluorescence sensor applications.