6.
Shahbaz S, Koushki K, Sathyapalan T, Majeed M, Sahebkar A
. PLGA-Based Curcumin Delivery System: An Interesting Therapeutic Approach in the Treatment of Alzheimer's Disease. Curr Neuropharmacol. 2021; 20(2):309-323.
PMC: 9413791.
DOI: 10.2174/1570159X19666210823103020.
View
7.
Limbach L, Li Y, Grass R, Brunner T, Hintermann M, Muller M
. Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ Sci Technol. 2005; 39(23):9370-6.
DOI: 10.1021/es051043o.
View
8.
Luo W, OReilly Beringhs A, Kim R, Zhang W, Patel S, Bogner R
. Impact of formulation on the quality and stability of freeze-dried nanoparticles. Eur J Pharm Biopharm. 2021; 169:256-267.
DOI: 10.1016/j.ejpb.2021.10.014.
View
9.
Liu X, Hao J, Xie T, Mukhtar N, Zhang W, Malik T
. Curcumin, A Potential Therapeutic Candidate for Anterior Segment Eye Diseases: A Review. Front Pharmacol. 2017; 8:66.
PMC: 5306202.
DOI: 10.3389/fphar.2017.00066.
View
10.
Arafa M, Mousa H, Kataia M, M S, Afifi N
. Functionalized surface of PLGA nanoparticles in thermosensitive gel to enhance the efficacy of antibiotics against antibiotic resistant infections in endodontics: A randomized clinical trial. Int J Pharm X. 2023; 6:100219.
PMC: 10701365.
DOI: 10.1016/j.ijpx.2023.100219.
View
11.
Chereddy K, Coco R, Memvanga P, Ucakar B, des Rieux A, Vandermeulen G
. Combined effect of PLGA and curcumin on wound healing activity. J Control Release. 2013; 171(2):208-15.
DOI: 10.1016/j.jconrel.2013.07.015.
View
12.
Shah A, Galor A
. Impact of Ocular Surface Temperature on Tear Characteristics: Current Insights. Clin Optom (Auckl). 2021; 13:51-62.
PMC: 7894805.
DOI: 10.2147/OPTO.S281601.
View
13.
Fonte P, Andrade F, Azevedo C, Pinto J, Seabra V, van de Weert M
. Effect of the Freezing Step in the Stability and Bioactivity of Protein-Loaded PLGA Nanoparticles Upon Lyophilization. Pharm Res. 2016; 33(11):2777-93.
DOI: 10.1007/s11095-016-2004-3.
View
14.
Abbas M, Khan S, Sadozai S, Khalil I, Anter A, Fouly M
. Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers (Basel). 2022; 14(6).
PMC: 8951139.
DOI: 10.3390/polym14061135.
View
15.
Qi H, Chen W, Huang C, Li L, Chen C, Li W
. Development of a poloxamer analogs/carbopol-based in situ gelling and mucoadhesive ophthalmic delivery system for puerarin. Int J Pharm. 2007; 337(1-2):178-87.
DOI: 10.1016/j.ijpharm.2006.12.038.
View
16.
Szalai B, Jojart-Laczkovich O, Kovacs A, Berko S, Balogh G, Katona G
. Design and Optimization of In Situ Gelling Mucoadhesive Eye Drops Containing Dexamethasone. Gels. 2022; 8(9).
PMC: 9498616.
DOI: 10.3390/gels8090561.
View
17.
Wei G, Xu H, Ding P, Li S, Zheng J
. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J Control Release. 2002; 83(1):65-74.
DOI: 10.1016/s0168-3659(02)00175-x.
View
18.
Abdeltawab H, Svirskis D, Sharma M
. Formulation strategies to modulate drug release from poloxamer based in situ gelling systems. Expert Opin Drug Deliv. 2020; 17(4):495-509.
DOI: 10.1080/17425247.2020.1731469.
View
19.
Shelke S, Shahi S, Jalalpure S, Dhamecha D
. Poloxamer 407-based intranasal thermoreversible gel of zolmitriptan-loaded nanoethosomes: formulation, optimization, evaluation and permeation studies. J Liposome Res. 2016; 26(4):313-23.
DOI: 10.3109/08982104.2015.1132232.
View
20.
Radomska-Lesniewska D, Osiecka-Iwan A, Hyc A, Gozdz A, Dabrowska A, Skopinski P
. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol. 2019; 44(2):181-189.
PMC: 6745545.
DOI: 10.5114/ceji.2019.87070.
View