6.
Zhou B, Shi B, Jin D, Liu X
. Controlling upconversion nanocrystals for emerging applications. Nat Nanotechnol. 2015; 10(11):924-36.
DOI: 10.1038/nnano.2015.251.
View
7.
Song R, Li Z, Guo J, Duchesne P, Qiu C, Mao C
. Solar Hydrocarbons: Single-Step, Atmospheric-Pressure Synthesis of C -C Alkanes and Alkenes from CO. Angew Chem Int Ed Engl. 2023; 62(27):e202304470.
DOI: 10.1002/anie.202304470.
View
8.
Wei Z, Wang W, Li W, Bai X, Zhao J, Tse E
. Steering Electron-Hole Migration Pathways Using Oxygen Vacancies in Tungsten Oxides to Enhance Their Photocatalytic Oxygen Evolution Performance. Angew Chem Int Ed Engl. 2021; 60(15):8236-8242.
DOI: 10.1002/anie.202016170.
View
9.
Xi G, Ouyang S, Li P, Ye J, Ma Q, Su N
. Ultrathin W18O49 nanowires with diameters below 1 nm: synthesis, near-infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angew Chem Int Ed Engl. 2012; 51(10):2395-9.
DOI: 10.1002/anie.201107681.
View
10.
Zhang P, Sui X, Wang Y, Wang Z, Zhao J, Wen N
. Surface Ru-H Bipyridine Complexes-Grafted TiO Nanohybrids for Efficient Photocatalytic CO Methanation. J Am Chem Soc. 2023; 145(10):5769-5777.
DOI: 10.1021/jacs.2c12632.
View
11.
Wang J, Kattel S, Hawxhurst C, Lee J, Tackett B, Chang K
. Enhancing Activity and Reducing Cost for Electrochemical Reduction of CO by Supporting Palladium on Metal Carbides. Angew Chem Int Ed Engl. 2019; 58(19):6271-6275.
DOI: 10.1002/anie.201900781.
View
12.
Sayed M, Yu J, Liu G, Jaroniec M
. Non-Noble Plasmonic Metal-Based Photocatalysts. Chem Rev. 2022; 122(11):10484-10537.
DOI: 10.1021/acs.chemrev.1c00473.
View
13.
Chu S, Cui Y, Liu N
. The path towards sustainable energy. Nat Mater. 2016; 16(1):16-22.
DOI: 10.1038/nmat4834.
View
14.
Wang G, Chen Z, Wang T, Wang D, Mao J
. P and Cu Dual Sites on Graphitic Carbon Nitride for Photocatalytic CO Reduction to Hydrocarbon Fuels with High C H Evolution. Angew Chem Int Ed Engl. 2022; 61(40):e202210789.
DOI: 10.1002/anie.202210789.
View
15.
Shen Y, Ren C, Zheng L, Xu X, Long R, Zhang W
. Room-temperature photosynthesis of propane from CO with Cu single atoms on vacancy-rich TiO. Nat Commun. 2023; 14(1):1117.
PMC: 9970977.
DOI: 10.1038/s41467-023-36778-5.
View
16.
Qi Y, Song L, Ouyang S, Liang X, Ning S, Zhang Q
. Photoinduced Defect Engineering: Enhanced Photothermal Catalytic Performance of 2D Black In O Nanosheets with Bifunctional Oxygen Vacancies. Adv Mater. 2019; 32(6):e1903915.
DOI: 10.1002/adma.201903915.
View
17.
Yang Q, Liu H, Lin Y, Su D, Tang Y, Chen L
. Atomically Dispersed Metal Catalysts for the Conversion of CO into High-Value C Chemicals. Adv Mater. 2024; 36(37):e2310912.
DOI: 10.1002/adma.202310912.
View
18.
Xu M, Qin X, Xu Y, Zhang X, Zheng L, Liu J
. Boosting CO hydrogenation towards C hydrocarbons over interfacial TiO/Ni catalysts. Nat Commun. 2022; 13(1):6720.
PMC: 9640681.
DOI: 10.1038/s41467-022-34463-7.
View
19.
Chen X, Liu L, Yu P, Mao S
. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011; 331(6018):746-50.
DOI: 10.1126/science.1200448.
View
20.
Zhao Y, Cui C, Han J, Wang H, Zhu X, Ge Q
. Direct C-C Coupling of CO2 and the Methyl Group from CH4 Activation through Facile Insertion of CO2 into Zn-CH3 σ-Bond. J Am Chem Soc. 2016; 138(32):10191-8.
DOI: 10.1021/jacs.6b04446.
View