6.
Pfob A, Mehrara B, Nelson J, Wilkins E, Pusic A, Sidey-Gibbons C
. Towards Patient-centered Decision-making in Breast Cancer Surgery: Machine Learning to Predict Individual Patient-reported Outcomes at 1-year Follow-up. Ann Surg. 2021; 277(1):e144-e152.
PMC: 9762704.
DOI: 10.1097/SLA.0000000000004862.
View
7.
Liang N, Li B, Jia Z, Wang C, Wu P, Zheng T
. Ultrasensitive detection of circulating tumour DNA via deep methylation sequencing aided by machine learning. Nat Biomed Eng. 2021; 5(6):586-599.
DOI: 10.1038/s41551-021-00746-5.
View
8.
You J, Huang Y, Ouyang L, Zhang X, Chen P, Wu X
. Automated and reusable deep learning (AutoRDL) framework for predicting response to neoadjuvant chemotherapy and axillary lymph node metastasis in breast cancer using ultrasound images: a retrospective, multicentre study. EClinicalMedicine. 2024; 69:102499.
PMC: 10909626.
DOI: 10.1016/j.eclinm.2024.102499.
View
9.
Callaway E
. 'The entire protein universe': AI predicts shape of nearly every known protein. Nature. 2022; 608(7921):15-16.
DOI: 10.1038/d41586-022-02083-2.
View
10.
Shen J, Choi Y, Lee T, Kim H, Chae Y, Dulken B
. Inflamed immune phenotype predicts favorable clinical outcomes of immune checkpoint inhibitor therapy across multiple cancer types. J Immunother Cancer. 2024; 12(2).
PMC: 10868175.
DOI: 10.1136/jitc-2023-008339.
View
11.
Fu M, Wang Y, Li C, Qiu Z, Axelrod D, Guth A
. Machine learning for detection of lymphedema among breast cancer survivors. Mhealth. 2018; 4:17.
PMC: 5994440.
DOI: 10.21037/mhealth.2018.04.02.
View
12.
Chau C, Steeg P, Figg W
. Antibody-drug conjugates for cancer. Lancet. 2019; 394(10200):793-804.
DOI: 10.1016/S0140-6736(19)31774-X.
View
13.
Leung K, Rowe S, Sadaghiani M, Leal J, Mena E, Choyke P
. Deep Semisupervised Transfer Learning for Fully Automated Whole-Body Tumor Quantification and Prognosis of Cancer on PET/CT. J Nucl Med. 2024; 65(4):643-650.
PMC: 10995523.
DOI: 10.2967/jnumed.123.267048.
View
14.
Nguyen L, Van Hoeck A, Cuppen E
. Machine learning-based tissue of origin classification for cancer of unknown primary diagnostics using genome-wide mutation features. Nat Commun. 2022; 13(1):4013.
PMC: 9273599.
DOI: 10.1038/s41467-022-31666-w.
View
15.
Song S, Woo O, Cho Y, Cho K, Park K, Kim J
. Prediction of Axillary Lymph Node Metastasis in Early-stage Triple-Negative Breast Cancer Using Multiparametric and Radiomic Features of Breast MRI. Acad Radiol. 2023; 30 Suppl 2:S25-S37.
DOI: 10.1016/j.acra.2023.05.025.
View
16.
Agostinetto E, Gligorov J, Piccart M
. Systemic therapy for early-stage breast cancer: learning from the past to build the future. Nat Rev Clin Oncol. 2022; 19(12):763-774.
PMC: 9575647.
DOI: 10.1038/s41571-022-00687-1.
View
17.
Li T, Li Y, Zhu X, He Y, Wu Y, Ying T
. Artificial intelligence in cancer immunotherapy: Applications in neoantigen recognition, antibody design and immunotherapy response prediction. Semin Cancer Biol. 2023; 91:50-69.
DOI: 10.1016/j.semcancer.2023.02.007.
View
18.
Ming C, Viassolo V, Probst-Hensch N, Dinov I, Chappuis P, Katapodi M
. Machine learning-based lifetime breast cancer risk reclassification compared with the BOADICEA model: impact on screening recommendations. Br J Cancer. 2020; 123(5):860-867.
PMC: 7463251.
DOI: 10.1038/s41416-020-0937-0.
View
19.
Damiani C, Kalliatakis G, Sreenivas M, Al-Attar M, Rose J, Pudney C
. Evaluation of an AI Model to Assess Future Breast Cancer Risk. Radiology. 2023; 307(5):e222679.
DOI: 10.1148/radiol.222679.
View
20.
Park S, Silva E, Singhal A, Kelly M, Licon K, Panagiotou I
. A deep learning model of tumor cell architecture elucidates response and resistance to CDK4/6 inhibitors. Nat Cancer. 2024; 5(7):996-1009.
PMC: 11286358.
DOI: 10.1038/s43018-024-00740-1.
View