6.
Zeigler M, Whittington D, Sotoodehnia N, Lemaitre R, Totah R
. A sensitive and improved throughput UPLC-MS/MS quantitation method of total cytochrome P450 mediated arachidonic acid metabolites that can separate regio-isomers and cis/trans-EETs from human plasma. Chem Phys Lipids. 2018; 216:162-170.
PMC: 6269592.
DOI: 10.1016/j.chemphyslip.2018.09.004.
View
7.
Xia F, He C, Ren M, Xu F, Wan J
. Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal Chim Acta. 2020; 1120:24-35.
DOI: 10.1016/j.aca.2020.04.064.
View
8.
Lu Y, Mai Z, Zhou H, Guan W, Wu S, Zou H
. Simultaneous profiling and quantification of 25 eicosanoids in human serum by ultrahigh-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem. 2022; 414(29-30):8233-8244.
PMC: 9712357.
DOI: 10.1007/s00216-022-04351-6.
View
9.
Zhang Y, Wang M, Huang Q, Zhu M, Ren J, Cao X
. An improved Ultra-High Performance Liquid chromatography-tandem mass spectrometry method for simultaneous quantitation of cytochrome P450 metabolites of arachidonic acid in human plasma. J Chromatogr A. 2018; 1563:144-153.
DOI: 10.1016/j.chroma.2018.05.072.
View
10.
Duflot T, Pereira T, Roche C, Iacob M, Cardinael P, Hamza N
. A sensitive LC-MS/MS method for the quantification of regioisomers of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids in human plasma during endothelial stimulation. Anal Bioanal Chem. 2016; 409(7):1845-1855.
DOI: 10.1007/s00216-016-0129-1.
View
11.
Gnudi L, Coward R, Long D
. Diabetic Nephropathy: Perspective on Novel Molecular Mechanisms. Trends Endocrinol Metab. 2016; 27(11):820-830.
DOI: 10.1016/j.tem.2016.07.002.
View
12.
Yamanouchi M, Furuichi K, Hoshino J, Ubara Y, Wada T
. Nonproteinuric diabetic kidney disease. Clin Exp Nephrol. 2020; 24(7):573-581.
PMC: 7271053.
DOI: 10.1007/s10157-020-01881-0.
View
13.
Roche C, Guerrot D, Harouki N, Duflot T, Besnier M, Remy-Jouet I
. Impact of soluble epoxide hydrolase inhibition on early kidney damage in hyperglycemic overweight mice. Prostaglandins Other Lipid Mediat. 2015; 120:148-54.
PMC: 4575616.
DOI: 10.1016/j.prostaglandins.2015.04.011.
View
14.
Hercule H, Schunck W, Gross V, Seringer J, Leung F, Weldon S
. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arterioscler Thromb Vasc Biol. 2008; 29(1):54-60.
DOI: 10.1161/ATVBAHA.108.171298.
View
15.
Wang D, Borrego-Conde L, Falck J, Sharma K, Wilcox C, Umans J
. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Kidney Int. 2003; 63(6):2187-93.
DOI: 10.1046/j.1523-1755.2003.00036.x.
View
16.
Luo P, Zhou Y, Chang H, Zhang J, Seki T, Wang C
. Glomerular 20-HETE, EETs, and TGF-beta1 in diabetic nephropathy. Am J Physiol Renal Physiol. 2009; 296(3):F556-63.
PMC: 2660192.
DOI: 10.1152/ajprenal.90613.2008.
View
17.
Fulton D, Falck J, McGiff J, Carroll M, Quilley J
. A method for the determination of 5,6-EET using the lactone as an intermediate in the formation of the diol. J Lipid Res. 1998; 39(8):1713-21.
View
18.
Carroll M, Garcia M, Falck J, McGiff J
. 5,6-epoxyeicosatrienoic acid, a novel arachidonate metabolite. Mechanism of vasoactivity in the rat. Circ Res. 1990; 67(5):1082-8.
DOI: 10.1161/01.res.67.5.1082.
View
19.
Ostermann A, Willenberg I, Schebb N
. Comparison of sample preparation methods for the quantitative analysis of eicosanoids and other oxylipins in plasma by means of LC-MS/MS. Anal Bioanal Chem. 2014; 407(5):1403-14.
DOI: 10.1007/s00216-014-8377-4.
View
20.
Gladine C, Ostermann A, Newman J, Schebb N
. MS-based targeted metabolomics of eicosanoids and other oxylipins: Analytical and inter-individual variabilities. Free Radic Biol Med. 2019; 144:72-89.
DOI: 10.1016/j.freeradbiomed.2019.05.012.
View