C-Rel Drives Pancreatic Cancer Metastasis Through Fibronectin-Integrin Signaling-induced Isolation Stress Resistance and EMT Activation
Overview
Authors
Affiliations
Pancreatic ductal adenocarcinoma remains one of the deadliest malignancies, with limited treatment options and a high recurrence rate. Recurrence happens often with metastasis, for which cancer cells must adapt to isolation stress to successfully colonize distant organs. While the fibronectin-integrin axis has been implicated in this adaptation, its regulatory mechanisms require further elaboration. Here, we identify c-Rel as an oncogenic driver in PDAC, promoting epithelial-to-mesenchymal transition (EMT) plasticity, extracellular matrix (ECM) remodeling, and resistance to isolation stress. Mechanistically, c-Rel directly regulates fibronectin () and CD61 () transcription, enhancing cellular plasticity and survival under anchorage-independent conditions. Fibronectin is not essential for EMT, but its absence significantly impairs metastatic colonization, highlighting a tumor-autonomous role for FN1 in isolation stress adaptation. These findings establish c-Rel as a key regulator of PDAC metastasis by controlling circulating tumor cell (CTC) niche and survival, suggesting that targeting the c-Rel-fibronectin-integrin axis could provide new therapeutic strategies to mitigate disease progression and recurrence.