6.
Szklarczyk D, Gable A, Lyon D, Junge A, Wyder S, Huerta-Cepas J
. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2018; 47(D1):D607-D613.
PMC: 6323986.
DOI: 10.1093/nar/gky1131.
View
7.
Saenz-de-Juano M, Silvestrelli G, Weber A, Rohrig C, Schmelcher M, Ulbrich S
. Inflammatory Response of Primary Cultured Bovine Mammary Epithelial Cells to Extracellular Vesicles. Biology (Basel). 2022; 11(3).
PMC: 8944978.
DOI: 10.3390/biology11030415.
View
8.
Rainard P, Foucras G, Fitzgerald J, Watts J, Koop G, Middleton J
. Knowledge gaps and research priorities in Staphylococcus aureus mastitis control. Transbound Emerg Dis. 2017; 65 Suppl 1:149-165.
DOI: 10.1111/tbed.12698.
View
9.
Aulik N, Hellenbrand K, Czuprynski C
. Mannheimia haemolytica and its leukotoxin cause macrophage extracellular trap formation by bovine macrophages. Infect Immun. 2012; 80(5):1923-33.
PMC: 3347434.
DOI: 10.1128/IAI.06120-11.
View
10.
Wang X, Liu M, Geng N, Du Y, Li Z, Gao X
. Staphylococcus aureus mediates pyroptosis in bovine mammary epithelial cell via activation of NLRP3 inflammasome. Vet Res. 2022; 53(1):10.
PMC: 8817610.
DOI: 10.1186/s13567-022-01027-y.
View
11.
Graber H, Naskova J, Studer E, Kaufmann T, Kirchhofer M, Brechbuhl M
. Mastitis-related subtypes of bovine Staphylococcus aureus are characterized by different clinical properties. J Dairy Sci. 2009; 92(4):1442-51.
DOI: 10.3168/jds.2008-1430.
View
12.
Gunther J, Czabanska A, Bauer I, Leigh J, Holst O, Seyfert H
. Streptococcus uberis strains isolated from the bovine mammary gland evade immune recognition by mammary epithelial cells, but not of macrophages. Vet Res. 2016; 47:13.
PMC: 4704416.
DOI: 10.1186/s13567-015-0287-8.
View
13.
Schanzenbach C, Bernal-Ulloa S, van der Weijden V, Pfaffl M, Buttner M, Wunsch A
. Blastocysts exhibit sex-specific signalling of IFNT transcription, translation and activity. Reproduction. 2018; 157(3):245-258.
DOI: 10.1530/REP-18-0312.
View
14.
Galperin M, Wolf Y, Makarova K, Vera Alvarez R, Landsman D, Koonin E
. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res. 2020; 49(D1):D274-D281.
PMC: 7778934.
DOI: 10.1093/nar/gkaa1018.
View
15.
Schmidt R, Pedersen C, Qiao Y, Zahringer U
. Chemical synthesis of bacterial lipoteichoic acids: an insight on its biological significance. Org Biomol Chem. 2011; 9(7):2040-52.
DOI: 10.1039/c0ob00794c.
View
16.
Tartaglia N, Nicolas A, de Rezende Rodovalho V, da Luz B, Briard-Bion V, Krupova Z
. Extracellular vesicles produced by human and animal Staphylococcus aureus strains share a highly conserved core proteome. Sci Rep. 2020; 10(1):8467.
PMC: 7242376.
DOI: 10.1038/s41598-020-64952-y.
View
17.
Yu N, Wagner J, Laird M, Melli G, Rey S, Lo R
. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010; 26(13):1608-15.
PMC: 2887053.
DOI: 10.1093/bioinformatics/btq249.
View
18.
Gunther J, Petzl W, Bauer I, Ponsuksili S, Zerbe H, Schuberth H
. Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci Rep. 2017; 7(1):4811.
PMC: 5500526.
DOI: 10.1038/s41598-017-05107-4.
View
19.
Ziesemer S, Eiffler I, Schonberg A, Muller C, Hochgrafe F, Beule A
. Staphylococcus aureus α-Toxin Induces Actin Filament Remodeling in Human Airway Epithelial Model Cells. Am J Respir Cell Mol Biol. 2017; 58(4):482-491.
DOI: 10.1165/rcmb.2016-0207OC.
View
20.
Zou C, Zhang Y, Liu H, Wu Y, Zhou X
. Extracellular Vesicles: Recent Insights Into the Interaction Between Host and Pathogenic Bacteria. Front Immunol. 2022; 13:840550.
PMC: 9174424.
DOI: 10.3389/fimmu.2022.840550.
View