6.
Moslehi J
. Cardiovascular Toxic Effects of Targeted Cancer Therapies. N Engl J Med. 2016; 375(15):1457-1467.
DOI: 10.1056/NEJMra1100265.
View
7.
Khera R, Oikonomou E, Nadkarni G, Morley J, Wiens J, Butte A
. Transforming Cardiovascular Care With Artificial Intelligence: From Discovery to Practice: JACC State-of-the-Art Review. J Am Coll Cardiol. 2024; 84(1):97-114.
DOI: 10.1016/j.jacc.2024.05.003.
View
8.
Chang W, Liu C, Feng Y, Liao C, Wang J, Chen Z
. An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline. Arch Toxicol. 2022; 96(10):2731-2737.
DOI: 10.1007/s00204-022-03341-y.
View
9.
Hanneman K, Playford D, Dey D, van Assen M, Mastrodicasa D, Cook T
. Value Creation Through Artificial Intelligence and Cardiovascular Imaging: A Scientific Statement From the American Heart Association. Circulation. 2024; 149(6):e296-e311.
DOI: 10.1161/CIR.0000000000001202.
View
10.
ODriscoll J, Hawkes W, Beqiri A, Mumith A, Parker A, Upton R
. Left ventricular assessment with artificial intelligence increases the diagnostic accuracy of stress echocardiography. Eur Heart J Open. 2022; 2(5):oeac059.
PMC: 9580364.
DOI: 10.1093/ehjopen/oeac059.
View
11.
Stefanovic F, Gomez-Caminero A, Jacobs D, Subramanian P, Puzanov I, Chilbert M
. Neural Net Modeling of Checkpoint Inhibitor Related Myocarditis and Steroid Response. Clin Pharmacol. 2022; 14:69-90.
PMC: 9376002.
DOI: 10.2147/CPAA.S369008.
View
12.
Sadler D, Okwuosa T, Teske A, Guha A, Collier P, Moudgil R
. Cardio oncology: Digital innovations, precision medicine and health equity. Front Cardiovasc Med. 2022; 9:951551.
PMC: 9669068.
DOI: 10.3389/fcvm.2022.951551.
View
13.
Brown S, Chung B, Doshi K, Hamid A, Pederson E, Maddula R
. Patient similarity and other artificial intelligence machine learning algorithms in clinical decision aid for shared decision-making in the Prevention of Cardiovascular Toxicity (PACT): a feasibility trial design. Cardiooncology. 2023; 9(1):7.
PMC: 9869606.
DOI: 10.1186/s40959-022-00151-0.
View
14.
Vandenberk B, Chew D, Prasana D, Gupta S, Exner D
. Successes and challenges of artificial intelligence in cardiology. Front Digit Health. 2023; 5:1201392.
PMC: 10336354.
DOI: 10.3389/fdgth.2023.1201392.
View
15.
Beam A, Manrai A, Ghassemi M
. Challenges to the Reproducibility of Machine Learning Models in Health Care. JAMA. 2020; 323(4):305-306.
PMC: 7335677.
DOI: 10.1001/jama.2019.20866.
View
16.
Goetz L, Seedat N, Vandersluis R, van der Schaar M
. Generalization-a key challenge for responsible AI in patient-facing clinical applications. NPJ Digit Med. 2024; 7(1):126.
PMC: 11109198.
DOI: 10.1038/s41746-024-01127-3.
View
17.
Mittermaier M, Raza M, Kvedar J
. Bias in AI-based models for medical applications: challenges and mitigation strategies. NPJ Digit Med. 2023; 6(1):113.
PMC: 10264403.
DOI: 10.1038/s41746-023-00858-z.
View
18.
Wu Y, Lin C
. Unveiling the black box: imperative for explainable AI in cardiovascular disease prevention. Lancet Reg Health West Pac. 2024; 48:101145.
PMC: 11298886.
DOI: 10.1016/j.lanwpc.2024.101145.
View
19.
Salih A, Boscolo Galazzo I, Gkontra P, Lee A, Lekadir K, Raisi-Estabragh Z
. Explainable Artificial Intelligence and Cardiac Imaging: Toward More Interpretable Models. Circ Cardiovasc Imaging. 2023; 16(4):e014519.
DOI: 10.1161/CIRCIMAGING.122.014519.
View
20.
Hamid A, MacLeod J, Erb S, Berman G, Martinez H, Scherrer-Crosbie M
. Editorial: Leveraging digital and technological innovations in cardio-oncology: building collaborative networks, implementing education and improving the cardiac outcomes of patients. Front Cardiovasc Med. 2023; 10:1184988.
PMC: 10169814.
DOI: 10.3389/fcvm.2023.1184988.
View