6.
Buermann W, Forkel M, OSullivan M, Sitch S, Friedlingstein P, Haverd V
. Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature. 2018; 562(7725):110-114.
DOI: 10.1038/s41586-018-0555-7.
View
7.
Wieder W, Lawrence D, Fisher R, Bonan G, Cheng S, Goodale C
. Beyond Static Benchmarking: Using Experimental Manipulations to Evaluate Land Model Assumptions. Global Biogeochem Cycles. 2020; 33(10):1289-1309.
PMC: 6919943.
DOI: 10.1029/2018GB006141.
View
8.
Zeng N, Zhao F, Collatz G, Kalnay E, Salawitch R, West T
. Agricultural Green Revolution as a driver of increasing atmospheric CO2 seasonal amplitude. Nature. 2014; 515(7527):394-7.
DOI: 10.1038/nature13893.
View
9.
LeBauer D, Treseder K
. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology. 2008; 89(2):371-9.
DOI: 10.1890/06-2057.1.
View
10.
MacBean N, Peylin P
. Biogeochemistry: agriculture and the global carbon cycle. Nature. 2014; 515(7527):351-2.
DOI: 10.1038/515351a.
View
11.
Wang K, Wang Y, Wang X, He Y, Li X, Keeling R
. Causes of slowing-down seasonal CO amplitude at Mauna Loa. Glob Chang Biol. 2020; 26(8):4462-4477.
DOI: 10.1111/gcb.15162.
View
12.
Alemohammad S, Fang B, Konings A, Aires F, Green J, Kolassa J
. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence. Biogeosciences. 2018; 14(18):4101-4124.
PMC: 5744880.
DOI: 10.5194/bg-14-4101-2017.
View
13.
Pastorello G, Trotta C, Canfora E, Chu H, Christianson D, Cheah Y
. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci Data. 2020; 7(1):225.
PMC: 7347557.
DOI: 10.1038/s41597-020-0534-3.
View
14.
Pingali P
. Green revolution: impacts, limits, and the path ahead. Proc Natl Acad Sci U S A. 2012; 109(31):12302-8.
PMC: 3411969.
DOI: 10.1073/pnas.0912953109.
View
15.
Pongratz J, Dolman H, Don A, Erb K, Fuchs R, Herold M
. Models meet data: Challenges and opportunities in implementing land management in Earth system models. Glob Chang Biol. 2017; 24(4):1470-1487.
PMC: 6446815.
DOI: 10.1111/gcb.13988.
View
16.
Piao S, Liu Z, Wang Y, Ciais P, Yao Y, Peng S
. On the causes of trends in the seasonal amplitude of atmospheric CO. Glob Chang Biol. 2017; 24(2):608-616.
DOI: 10.1111/gcb.13909.
View
17.
Haughton N, Abramowitz G, Pitman A, Or D, Best M, Johnson H
. The plumbing of land surface models: is poor performance a result of methodology or data quality?. J Hydrometeorol. 2018; 17(6):1705-1723.
PMC: 5884676.
DOI: 10.1175/JHM-D-15-0171.1.
View
18.
Wenzel S, Cox P, Eyring V, Friedlingstein P
. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO. Nature. 2016; 538(7626):499-501.
DOI: 10.1038/nature19772.
View
19.
Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S
. Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature. 2008; 451(7174):49-52.
DOI: 10.1038/nature06444.
View
20.
Sanderman J, Hengl T, Fiske G
. Soil carbon debt of 12,000 years of human land use. Proc Natl Acad Sci U S A. 2017; 114(36):9575-9580.
PMC: 5594668.
DOI: 10.1073/pnas.1706103114.
View