6.
Bowden J, Davey Smith G, Haycock P, Burgess S
. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol. 2016; 40(4):304-14.
PMC: 4849733.
DOI: 10.1002/gepi.21965.
View
7.
He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J
. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA. 2015; 314(11):1142-8.
DOI: 10.1001/jama.2015.10803.
View
8.
Li X, Li H, Cheng J, Wang M, Zhong Y, Shi G
. Causal Associations of Thyroid Function and Age-Related Macular Degeneration: A Two-Sample Mendelian Randomization Study. Am J Ophthalmol. 2022; 239:108-114.
DOI: 10.1016/j.ajo.2022.01.026.
View
9.
Geenen I, Molin D, van den Akker N, Jeukens F, Spronk H, Schurink G
. Endothelial cells (ECs) for vascular tissue engineering: venous ECs are less thrombogenic than arterial ECs. J Tissue Eng Regen Med. 2012; 9(5):564-76.
DOI: 10.1002/term.1642.
View
10.
Ferris 3rd F, Wilkinson C, Bird A, Chakravarthy U, Chew E, Csaky K
. Clinical classification of age-related macular degeneration. Ophthalmology. 2013; 120(4):844-51.
PMC: 11551519.
DOI: 10.1016/j.ophtha.2012.10.036.
View
11.
Sun C, Klein R, Wong T
. Age-related macular degeneration and risk of coronary heart disease and stroke: the Cardiovascular Health Study. Ophthalmology. 2009; 116(10):1913-9.
PMC: 3818148.
DOI: 10.1016/j.ophtha.2009.03.046.
View
12.
Wang Z, Emmerich A, Pillon N, Moore T, Hemerich D, Cornelis M
. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying mechanisms and roles in disease prevention. Nat Genet. 2022; 54(9):1332-1344.
PMC: 9470530.
DOI: 10.1038/s41588-022-01165-1.
View
13.
Chen X, Hong X, Gao W, Luo S, Cai J, Liu G
. Causal relationship between physical activity, leisure sedentary behaviors and COVID-19 risk: a Mendelian randomization study. J Transl Med. 2022; 20(1):216.
PMC: 9100292.
DOI: 10.1186/s12967-022-03407-6.
View
14.
Ricci N, Cunha A
. Physical Exercise for Frailty and Cardiovascular Diseases. Adv Exp Med Biol. 2020; 1216:115-129.
DOI: 10.1007/978-3-030-33330-0_12.
View
15.
Colijn J, Meester-Smoor M, Verzijden T, de Breuk A, Silva R, Merle B
. Genetic Risk, Lifestyle, and Age-Related Macular Degeneration in Europe: The EYE-RISK Consortium. Ophthalmology. 2020; 128(7):1039-1049.
DOI: 10.1016/j.ophtha.2020.11.024.
View
16.
Burgess S, Thompson S
. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017; 32(5):377-389.
PMC: 5506233.
DOI: 10.1007/s10654-017-0255-x.
View
17.
Elosua R, Bartali B, Ordovas J, Corsi A, Lauretani F, Ferrucci L
. Association between physical activity, physical performance, and inflammatory biomarkers in an elderly population: the InCHIANTI study. J Gerontol A Biol Sci Med Sci. 2005; 60(6):760-7.
DOI: 10.1093/gerona/60.6.760.
View
18.
Jingzhi W, Cui X
. The Impact of Blood and Urine Biomarkers on Age-Related Macular Degeneration: Insights from Mendelian Randomization and Cross-sectional Study from NHANES. Biol Proced Online. 2024; 26(1):19.
PMC: 11201032.
DOI: 10.1186/s12575-024-00248-z.
View
19.
Timmerman K, Flynn M, Coen P, Markofski M, Pence B
. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise?. J Leukoc Biol. 2008; 84(5):1271-8.
DOI: 10.1189/jlb.0408244.
View
20.
Yang Q, Sanderson E, Tilling K, Borges M, Lawlor D
. Exploring and mitigating potential bias when genetic instrumental variables are associated with multiple non-exposure traits in Mendelian randomization. Eur J Epidemiol. 2022; 37(7):683-700.
PMC: 9329407.
DOI: 10.1007/s10654-022-00874-5.
View