6.
Jang K, Han S, Xu S, Mathewson K, Zhang Y, Jeong J
. Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun. 2014; 5:4779.
DOI: 10.1038/ncomms5779.
View
7.
Binasch , Grunberg , Saurenbach , Zinn
. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys Rev B Condens Matter. 1989; 39(7):4828-4830.
DOI: 10.1103/physrevb.39.4828.
View
8.
Wang W, Jiang Y, Zhong D, Zhang Z, Choudhury S, Lai J
. Neuromorphic sensorimotor loop embodied by monolithically integrated, low-voltage, soft e-skin. Science. 2023; 380(6646):735-742.
DOI: 10.1126/science.ade0086.
View
9.
Baibich , Broto , Fert , Nguyen Van Dau F , Petroff , ETIENNE
. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys Rev Lett. 1988; 61(21):2472-2475.
DOI: 10.1103/PhysRevLett.61.2472.
View
10.
Kim Y, Parada G, Liu S, Zhao X
. Ferromagnetic soft continuum robots. Sci Robot. 2020; 4(33).
DOI: 10.1126/scirobotics.aax7329.
View
11.
Kim D, Ahn J, Choi W, Kim H, Kim T, Song J
. Stretchable and foldable silicon integrated circuits. Science. 2008; 320(5875):507-11.
DOI: 10.1126/science.1154367.
View
12.
Lipomi D, Vosgueritchian M, Tee B, Hellstrom S, Lee J, Fox C
. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol. 2011; 6(12):788-92.
DOI: 10.1038/nnano.2011.184.
View
13.
Kang D, Pikhitsa P, Choi Y, Lee C, Shin S, Piao L
. Ultrasensitive mechanical crack-based sensor inspired by the spider sensory system. Nature. 2014; 516(7530):222-6.
DOI: 10.1038/nature14002.
View
14.
Liu Y, Pharr M, Salvatore G
. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano. 2017; 11(10):9614-9635.
DOI: 10.1021/acsnano.7b04898.
View
15.
Chortos A, Liu J, Bao Z
. Pursuing prosthetic electronic skin. Nat Mater. 2016; 15(9):937-50.
DOI: 10.1038/nmat4671.
View
16.
Gu L, Poddar S, Lin Y, Long Z, Zhang D, Zhang Q
. A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature. 2020; 581(7808):278-282.
DOI: 10.1038/s41586-020-2285-x.
View
17.
Park M, Yoo J, Yang T, Jung Y, Vazquez-Guardado A, Li S
. Skin-integrated systems for power efficient, programmable thermal sensations across large body areas. Proc Natl Acad Sci U S A. 2023; 120(6):e2217828120.
PMC: 9963740.
DOI: 10.1073/pnas.2217828120.
View
18.
Yu X, Xie Z, Yu Y, Lee J, Vazquez-Guardado A, Luan H
. Skin-integrated wireless haptic interfaces for virtual and augmented reality. Nature. 2019; 575(7783):473-479.
DOI: 10.1038/s41586-019-1687-0.
View
19.
Canon Bermudez G, Karnaushenko D, Karnaushenko D, Lebanov A, Bischoff L, Kaltenbrunner M
. Magnetosensitive e-skins with directional perception for augmented reality. Sci Adv. 2018; 4(1):eaao2623.
PMC: 5777399.
DOI: 10.1126/sciadv.aao2623.
View
20.
Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y
. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci U S A. 2005; 102(35):12321-5.
PMC: 1187825.
DOI: 10.1073/pnas.0502392102.
View