6.
Posada D
. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Curr Protoc Bioinformatics. 2008; Chapter 6:Unit 6.5.
DOI: 10.1002/0471250953.bi0605s00.
View
7.
Nei M, Gojobori T
. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986; 3(5):418-26.
DOI: 10.1093/oxfordjournals.molbev.a040410.
View
8.
Chen Y, Jiang L, Zhao W, Liu L, Zhao Y, Shao Y
. Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Vet Microbiol. 2017; 198:108-115.
PMC: 7117283.
DOI: 10.1016/j.vetmic.2016.12.017.
View
9.
Kuo L, Godeke G, Raamsman M, Masters P, Rottier P
. Retargeting of coronavirus by substitution of the spike glycoprotein ectodomain: crossing the host cell species barrier. J Virol. 2000; 74(3):1393-406.
PMC: 111474.
DOI: 10.1128/jvi.74.3.1393-1406.2000.
View
10.
Hu G, Mai T, Chen C
. Visualizing the GPCR Network: Classification and Evolution. Sci Rep. 2017; 7(1):15495.
PMC: 5686146.
DOI: 10.1038/s41598-017-15707-9.
View
11.
Hughes L, Savage C, Naylor C, Bennett M, Chantrey J, Jones R
. Genetically diverse coronaviruses in wild bird populations of northern England. Emerg Infect Dis. 2009; 15(7):1091-4.
PMC: 2744231.
DOI: 10.3201/eid1507.090067.
View
12.
Lee C, Jackwood M
. Origin and evolution of Georgia 98 (GA98), a new serotype of avian infectious bronchitis virus. Virus Res. 2001; 80(1-2):33-9.
DOI: 10.1016/s0168-1702(01)00345-8.
View
13.
Houta M, Hassan K, El-Sawah A, Elkady M, Kilany W, Ali A
. The emergence, evolution and spread of infectious bronchitis virus genotype GI-23. Arch Virol. 2021; 166(1):9-26.
PMC: 7791962.
DOI: 10.1007/s00705-020-04920-z.
View
14.
Katoh K, Standley D
. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013; 30(4):772-80.
PMC: 3603318.
DOI: 10.1093/molbev/mst010.
View
15.
Ge B, Hu G, Chen R, Chen C
. MSClustering: A Cytoscape Tool for Multi-Level Clustering of Biological Networks. Int J Mol Sci. 2022; 23(22).
PMC: 9699063.
DOI: 10.3390/ijms232214240.
View
16.
Moharam I, Sultan H, Hassan K, Ibrahim M, Shany S, Shehata A
. Emerging infectious bronchitis virus (IBV) in Egypt: Evidence for an evolutionary advantage of a new S1 variant with a unique gene 3ab constellation. Infect Genet Evol. 2020; 85:104433.
PMC: 7327463.
DOI: 10.1016/j.meegid.2020.104433.
View
17.
Hu G, Tai Y, Chen C
. Unraveling the evolutionary patterns and phylogenomics of coronaviruses: A consensus network approach. J Med Virol. 2023; 95(11):e29233.
DOI: 10.1002/jmv.29233.
View
18.
Minh B, Schmidt H, Chernomor O, Schrempf D, Woodhams M, von Haeseler A
. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol Biol Evol. 2020; 37(5):1530-1534.
PMC: 7182206.
DOI: 10.1093/molbev/msaa015.
View
19.
Martin D, Varsani A, Roumagnac P, Botha G, Maslamoney S, Schwab T
. RDP5: a computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021; 7(1):veaa087.
PMC: 8062008.
DOI: 10.1093/ve/veaa087.
View
20.
Wille M, Holmes E
. Wild birds as reservoirs for diverse and abundant gamma- and deltacoronaviruses. FEMS Microbiol Rev. 2020; 44(5):631-644.
PMC: 7454673.
DOI: 10.1093/femsre/fuaa026.
View