6.
Zheng Y, Liu Y, Zhong D, Nikzad S, Liu S, Yu Z
. Monolithic optical microlithography of high-density elastic circuits. Science. 2021; 373(6550):88-94.
DOI: 10.1126/science.abh3551.
View
7.
Du Y, Yu G, Dai X, Wang X, Yao B, Kong J
. Highly Stretchable, Self-Healable, Ultrasensitive Strain and Proximity Sensors Based on Skin-Inspired Conductive Film for Human Motion Monitoring. ACS Appl Mater Interfaces. 2020; 12(46):51987-51998.
DOI: 10.1021/acsami.0c15578.
View
8.
Cheng S, Wang Y, Zhang R, Wang H, Sun C, Wang T
. Recent Progress in Gas Sensors Based on P3HT Polymer Field-Effect Transistors. Sensors (Basel). 2023; 23(19).
PMC: 10575277.
DOI: 10.3390/s23198309.
View
9.
Jiang Y, Zhang Z, Wang Y, Li D, Coen C, Hwaun E
. Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics. Science. 2022; 375(6587):1411-1417.
DOI: 10.1126/science.abj7564.
View
10.
Xu J, Wang S, Wang G, Zhu C, Luo S, Jin L
. Highly stretchable polymer semiconductor films through the nanoconfinement effect. Science. 2017; 355(6320):59-64.
DOI: 10.1126/science.aah4496.
View
11.
Tang Q, Tong Y, Zheng Y, He Y, Zhang Y, Dong H
. Organic nanowire crystals combine excellent device performance and mechanical flexibility. Small. 2011; 7(2):189-93.
DOI: 10.1002/smll.201001217.
View
12.
Kim M, Jeong M, Kim J, Nam T, Vo N, Jin L
. Mechanically robust stretchable semiconductor metallization for skin-inspired organic transistors. Sci Adv. 2022; 8(51):eade2988.
PMC: 9770969.
DOI: 10.1126/sciadv.ade2988.
View
13.
Li Y, Li N, Liu W, Prominski A, Kang S, Dai Y
. Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat Commun. 2023; 14(1):4488.
PMC: 10372055.
DOI: 10.1038/s41467-023-40191-3.
View
14.
Qian Y, Zhang X, Xie L, Qi D, Chandran B, Chen X
. Stretchable Organic Semiconductor Devices. Adv Mater. 2016; 28(42):9243-9265.
DOI: 10.1002/adma.201601278.
View
15.
Wang S, Xu J, Wang W, Wang G, Rastak R, Molina-Lopez F
. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature. 2018; 555(7694):83-88.
DOI: 10.1038/nature25494.
View
16.
Xu J, Wu H, Zhu C, Ehrlich A, Shaw L, Nikolka M
. Multi-scale ordering in highly stretchable polymer semiconducting films. Nat Mater. 2019; 18(6):594-601.
DOI: 10.1038/s41563-019-0340-5.
View
17.
Scott J, Xue X, Wang M, Kline R, Hoffman B, Dougherty D
. Significantly Increasing the Ductility of High Performance Polymer Semiconductors through Polymer Blending. ACS Appl Mater Interfaces. 2016; 8(22):14037-45.
PMC: 5494703.
DOI: 10.1021/acsami.6b01852.
View
18.
Oh J, Son D, Katsumata T, Lee Y, Kim Y, Lopez J
. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci Adv. 2019; 5(11):eaav3097.
PMC: 6839939.
DOI: 10.1126/sciadv.aav3097.
View
19.
Schwartz G, Tee B, Mei J, Appleton A, Kim D, Wang H
. Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring. Nat Commun. 2013; 4:1859.
DOI: 10.1038/ncomms2832.
View
20.
Oh J, Rondeau-Gagne S, Chiu Y, Chortos A, Lissel F, Wang G
. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016; 539(7629):411-415.
DOI: 10.1038/nature20102.
View