6.
Moradali M, Rehm B
. Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol. 2020; 18(4):195-210.
PMC: 7223192.
DOI: 10.1038/s41579-019-0313-3.
View
7.
Arkaban H, Barani M, Akbarizadeh M, Chauhan N, Jadoun S, Dehghani Soltani M
. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers (Basel). 2022; 14(6).
PMC: 8948866.
DOI: 10.3390/polym14061259.
View
8.
Alam M, Hossain M, Kawsar M, Bahadur N, Ahmed S
. Synthesis of nano-hydroxyapatite using emulsion, pyrolysis, combustion, and sonochemical methods and biogenic sources: a review. RSC Adv. 2024; 14(5):3548-3559.
PMC: 10801447.
DOI: 10.1039/d3ra07559a.
View
9.
Sabir N, Akkaya Z
. Musculoskeletal infections through direct inoculation. Skeletal Radiol. 2024; 53(10):2161-2179.
PMC: 11371867.
DOI: 10.1007/s00256-024-04591-w.
View
10.
Nocchetti M, Pietrella D, Antognelli C, Di Michele A, Russo C, Giulivi E
. Alginate microparticles containing silver@hydroxyapatite functionalized calcium carbonate composites. Int J Pharm. 2024; 661:124393.
DOI: 10.1016/j.ijpharm.2024.124393.
View
11.
Sharma R, Malviya R, Singh S, Prajapati B
. A Critical Review on Classified Excipient Sodium-Alginate-Based Hydrogels: Modification, Characterization, and Application in Soft Tissue Engineering. Gels. 2023; 9(5).
PMC: 10217932.
DOI: 10.3390/gels9050430.
View
12.
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z
. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther. 2024; 9(1):166.
PMC: 11214942.
DOI: 10.1038/s41392-024-01852-x.
View
13.
Kuperkar K, Atanase L, Bahadur A, Crivei I, Bahadur P
. Degradable Polymeric Bio(nano)materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers (Basel). 2024; 16(2).
PMC: 10818796.
DOI: 10.3390/polym16020206.
View
14.
Ferraz M
. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci. 2024; 25(7).
PMC: 11012232.
DOI: 10.3390/ijms25073836.
View
15.
Alsharif S, Badran M, Moustafa M, Meshref R, Mohamed E
. Hydrothermal extraction and physicochemical characterization of biogenic hydroxyapatite nanoparticles from buffalo waste bones for in vivo xenograft in experimental rats. Sci Rep. 2023; 13(1):17490.
PMC: 10577150.
DOI: 10.1038/s41598-023-43989-9.
View
16.
Hart A, Ebiundu K, Peretomode E, Onyeaka H, Nwabor O, Obileke K
. Value-added materials recovered from waste bone biomass: technologies and applications. RSC Adv. 2022; 12(34):22302-22330.
PMC: 9364440.
DOI: 10.1039/d2ra03557j.
View
17.
Al-Rawe R, Al-Rammahi H, Cahyanto A, Maamor A, Liew Y, Sukumaran P
. Cuttlefish-Bone-Derived Biomaterials in Regenerative Medicine, Dentistry, and Tissue Engineering: A Systematic Review. J Funct Biomater. 2024; 15(8).
PMC: 11355926.
DOI: 10.3390/jfb15080219.
View
18.
Nyabadza A, McCarthy E, Makhesana M, Heidarinassab S, Plouze A, Vazquez M
. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Adv Colloid Interface Sci. 2023; 321:103010.
DOI: 10.1016/j.cis.2023.103010.
View
19.
Iswarya S, Theivasanthi T, Gopinath S
. Sodium alginate/Hydroxyapatite/nanocellulose composites: Synthesis and Potentials for bone tissue engineering. J Mech Behav Biomed Mater. 2023; 148:106189.
DOI: 10.1016/j.jmbbm.2023.106189.
View
20.
Al-Shalawi F, Mohamed Ariff A, Jung D, Mohd Ariffin M, Seng Kim C, Brabazon D
. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel). 2023; 15(12).
PMC: 10303232.
DOI: 10.3390/polym15122601.
View