6.
Sugai Y, Kadoya N, Tanaka S, Tanabe S, Umeda M, Yamamoto T
. Impact of feature selection methods and subgroup factors on prognostic analysis with CT-based radiomics in non-small cell lung cancer patients. Radiat Oncol. 2021; 16(1):80.
PMC: 8086112.
DOI: 10.1186/s13014-021-01810-9.
View
7.
Sun F, Chen Y, Chen X, Sun X, Xing L
. CT-based radiomics for predicting brain metastases as the first failure in patients with curatively resected locally advanced non-small cell lung cancer. Eur J Radiol. 2020; 134:109411.
DOI: 10.1016/j.ejrad.2020.109411.
View
8.
van Timmeren J, Leijenaar R, van Elmpt W, Reymen B, Oberije C, Monshouwer R
. Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother Oncol. 2017; 123(3):363-369.
DOI: 10.1016/j.radonc.2017.04.016.
View
9.
Yang L, Yang J, Zhou X, Huang L, Zhao W, Wang T
. Development of a radiomics nomogram based on the 2D and 3D CT features to predict the survival of non-small cell lung cancer patients. Eur Radiol. 2018; 29(5):2196-2206.
DOI: 10.1007/s00330-018-5770-y.
View
10.
van Timmeren J, van Elmpt W, Leijenaar R, Reymen B, Monshouwer R, Bussink J
. Longitudinal radiomics of cone-beam CT images from non-small cell lung cancer patients: Evaluation of the added prognostic value for overall survival and locoregional recurrence. Radiother Oncol. 2019; 136:78-85.
PMC: 6598851.
DOI: 10.1016/j.radonc.2019.03.032.
View
11.
Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby O
. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Med. 2019; 60:58-65.
DOI: 10.1016/j.ejmp.2019.03.024.
View
12.
Park S, Lee S, Kim S, Choi S, Kim W, Do K
. Performance of radiomics models for survival prediction in non-small-cell lung cancer: influence of CT slice thickness. Eur Radiol. 2020; 31(5):2856-2865.
DOI: 10.1007/s00330-020-07423-2.
View
13.
Hao D, Li Q, Feng Q, Qi L, Liu X, Arefan D
. Identifying Prognostic Markers From Clinical, Radiomics, and Deep Learning Imaging Features for Gastric Cancer Survival Prediction. Front Oncol. 2022; 11:725889.
PMC: 8847133.
DOI: 10.3389/fonc.2021.725889.
View
14.
Liu G, Poon M, Zapala M, Temple W, Vo K, Matthay K
. Incorporating Radiomics into Machine Learning Models to Predict Outcomes of Neuroblastoma. J Digit Imaging. 2022; 35(3):605-612.
PMC: 9156639.
DOI: 10.1007/s10278-022-00607-w.
View
15.
Wang J, Zeng J, Li H, Yu X
. A Deep Learning Radiomics Analysis for Survival Prediction in Esophageal Cancer. J Healthc Eng. 2022; 2022:4034404.
PMC: 8970800.
DOI: 10.1155/2022/4034404.
View
16.
Yang Y, Zhou Y, Zhou C, Ma X
. Deep learning radiomics based on contrast enhanced computed tomography predicts microvascular invasion and survival outcome in early stage hepatocellular carcinoma. Eur J Surg Oncol. 2021; 48(5):1068-1077.
DOI: 10.1016/j.ejso.2021.11.120.
View
17.
Zhang Y, Lobo-Mueller E, Karanicolas P, Gallinger S, Haider M, Khalvati F
. Prognostic Value of Transfer Learning Based Features in Resectable Pancreatic Ductal Adenocarcinoma. Front Artif Intell. 2021; 3:550890.
PMC: 7861273.
DOI: 10.3389/frai.2020.550890.
View
18.
Zhang Y, Lobo-Mueller E, Karanicolas P, Gallinger S, Haider M, Khalvati F
. CNN-based survival model for pancreatic ductal adenocarcinoma in medical imaging. BMC Med Imaging. 2020; 20(1):11.
PMC: 6998249.
DOI: 10.1186/s12880-020-0418-1.
View
19.
Zhang Y, Lobo-Mueller E, Karanicolas P, Gallinger S, Haider M, Khalvati F
. Improving prognostic performance in resectable pancreatic ductal adenocarcinoma using radiomics and deep learning features fusion in CT images. Sci Rep. 2021; 11(1):1378.
PMC: 7809062.
DOI: 10.1038/s41598-021-80998-y.
View
20.
Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L
. Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma. Tomography. 2017; 2(4):388-395.
PMC: 5218828.
DOI: 10.18383/j.tom.2016.00211.
View