» Articles » PMID: 39930263

AI Accurately Identifies Targetable Alterations in Lung Cancer Histological Images

Overview
Date 2025 Feb 10
PMID 39930263
Authors
Affiliations
Soon will be listed here.
References
1.
Zhao Y, Xiong S, Ren Q, Wang J, Li M, Yang L . Deep learning using histological images for gene mutation prediction in lung cancer: a multicentre retrospective study. Lancet Oncol. 2024; 26(1):136-146. DOI: 10.1016/S1470-2045(24)00599-0. View

2.
Tian T, Li Y, Li J, Xu H, Fan H, Zhu J . Immunotherapy for patients with advanced non-small cell lung cancer harboring oncogenic driver alterations other than : a multicenter real-world analysis. Transl Lung Cancer Res. 2024; 13(4):861-874. PMC: 11082706. DOI: 10.21037/tlcr-24-116. View

3.
Araki T, Kanda S, Horinouchi H, Ohe Y . Current treatment strategies for EGFR-mutated non-small cell lung cancer: from first line to beyond osimertinib resistance. Jpn J Clin Oncol. 2023; 53(7):547-561. PMC: 10311169. DOI: 10.1093/jjco/hyad052. View

4.
Lu M, Williamson D, Chen T, Chen R, Barbieri M, Mahmood F . Data-efficient and weakly supervised computational pathology on whole-slide images. Nat Biomed Eng. 2021; 5(6):555-570. PMC: 8711640. DOI: 10.1038/s41551-020-00682-w. View

5.
Lu M, Chen T, Williamson D, Zhao M, Shady M, Lipkova J . AI-based pathology predicts origins for cancers of unknown primary. Nature. 2021; 594(7861):106-110. DOI: 10.1038/s41586-021-03512-4. View