6.
He J, Liu X, Zhang H, Yang Z, Shi X, Liu Q
. Enhancing Zn-Ion Storage Capability of Hydrated Vanadium Pentoxide by the Strategic Introduction of La. ChemSusChem. 2019; 13(6):1568-1574.
DOI: 10.1002/cssc.201902659.
View
7.
Grey C, Hall D
. Prospects for lithium-ion batteries and beyond-a 2030 vision. Nat Commun. 2020; 11(1):6279.
PMC: 7722877.
DOI: 10.1038/s41467-020-19991-4.
View
8.
Yu H, Rui X, Tan H, Chen J, Huang X, Xu C
. Cu doped V2O5 flowers as cathode material for high-performance lithium ion batteries. Nanoscale. 2013; 5(11):4937-43.
DOI: 10.1039/c3nr00548h.
View
9.
Chuai M, Yang J, Tan R, Liu Z, Yuan Y, Xu Y
. Theory-Driven Design of a Cationic Accelerator for High-Performance Electrolytic MnO -Zn Batteries. Adv Mater. 2022; 34(33):e2203249.
DOI: 10.1002/adma.202203249.
View
10.
Li W, Wang K, Zhou M, Zhan H, Cheng S, Jiang K
. Advanced Low-Cost, High-Voltage, Long-Life Aqueous Hybrid Sodium/Zinc Batteries Enabled by a Dendrite-Free Zinc Anode and Concentrated Electrolyte. ACS Appl Mater Interfaces. 2018; 10(26):22059-22066.
DOI: 10.1021/acsami.8b04085.
View
11.
Chen H, Huang J, Tian S, Liu L, Qin T, Song L
. Interlayer Modification of Pseudocapacitive Vanadium Oxide and Zn(H O) Migration Regulation for Ultrahigh Rate and Durable Aqueous Zinc-Ion Batteries. Adv Sci (Weinh). 2021; 8(14):e2004924.
PMC: 8292880.
DOI: 10.1002/advs.202004924.
View
12.
Kresse , Hafner
. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B Condens Matter. 1994; 49(20):14251-14269.
DOI: 10.1103/physrevb.49.14251.
View
13.
Schoiber J, Sollinger D, Baran V, Diemant T, Redhammer G, Behm R
. Resolving the structure of VO·HO and Mo-substituted VO·HO. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2022; 78(Pt 4):637-642.
PMC: 9370211.
DOI: 10.1107/S2052520622006473.
View
14.
Xie J, Lu Y
. A retrospective on lithium-ion batteries. Nat Commun. 2020; 11(1):2499.
PMC: 7237495.
DOI: 10.1038/s41467-020-16259-9.
View
15.
Manthiram A
. An Outlook on Lithium Ion Battery Technology. ACS Cent Sci. 2017; 3(10):1063-1069.
PMC: 5658750.
DOI: 10.1021/acscentsci.7b00288.
View
16.
Wang D, Wei C, Lin M, Pan C, Chou H, Chen H
. Advanced rechargeable aluminium ion battery with a high-quality natural graphite cathode. Nat Commun. 2017; 8:14283.
PMC: 5316828.
DOI: 10.1038/ncomms14283.
View
17.
Khamsanga S, Pornprasertsuk R, Yonezawa T, Mohamad A, Kheawhom S
. δ-MnO nanoflower/graphite cathode for rechargeable aqueous zinc ion batteries. Sci Rep. 2019; 9(1):8441.
PMC: 6560026.
DOI: 10.1038/s41598-019-44915-8.
View
18.
Wang T, Li C, Xie X, Lu B, He Z, Liang S
. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. ACS Nano. 2020; 14(12):16321-16347.
DOI: 10.1021/acsnano.0c07041.
View
19.
Zhuang Y, Zong Q, Wu Y, Liu C, Zhang Q, Tao D
. Tuning [VO] Octahedron of Ammonium Vanadates via F Incorporation for High-Performance Aqueous Zinc Ion Batteries. Small. 2023; 20(13):e2306561.
DOI: 10.1002/smll.202306561.
View
20.
Xu J, Zhang Y, Liu C, Cheng H, Cai X, Jia D
. Al Introduction Hydrated Vanadium Oxide Induced High Performance for Aqueous Zinc-Ion Batteries. Small. 2022; 18(47):e2204180.
DOI: 10.1002/smll.202204180.
View