6.
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P
. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond). 2022; 42(5):401-434.
PMC: 9118050.
DOI: 10.1002/cac2.12291.
View
7.
Sherman M, Yu R, Engle D, Ding N, Atkins A, Tiriac H
. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell. 2014; 159(1):80-93.
PMC: 4177038.
DOI: 10.1016/j.cell.2014.08.007.
View
8.
Cappellesso F, Orban M, Shirgaonkar N, Berardi E, Serneels J, Neveu M
. Targeting the bicarbonate transporter SLC4A4 overcomes immunosuppression and immunotherapy resistance in pancreatic cancer. Nat Cancer. 2022; 3(12):1464-1483.
PMC: 9767871.
DOI: 10.1038/s43018-022-00470-2.
View
9.
Sarkar M, Nguyen T, Gundre E, Ogunlusi O, El-Sobky M, Giri B
. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front Cell Dev Biol. 2023; 11:1089068.
PMC: 9923123.
DOI: 10.3389/fcell.2023.1089068.
View
10.
Liu R, Li H, Liu L, Yu J, Ren X
. Fibroblast activation protein: A potential therapeutic target in cancer. Cancer Biol Ther. 2012; 13(3):123-9.
DOI: 10.4161/cbt.13.3.18696.
View
11.
Zhang L, Jia Y, Yang J, Zhang L, Hou S, Niu X
. Efficient Immunotherapy of Drug-Free Layered Double Hydroxide Nanoparticles via Neutralizing Excess Acid and Blocking Tumor Cell Autophagy. ACS Nano. 2022; 16(8):12036-12048.
DOI: 10.1021/acsnano.2c02183.
View
12.
Arcucci A, Ruocco M, Granato G, Sacco A, Montagnani S
. Cancer: An Oxidative Crosstalk between Solid Tumor Cells and Cancer Associated Fibroblasts. Biomed Res Int. 2016; 2016:4502846.
PMC: 4993917.
DOI: 10.1155/2016/4502846.
View
13.
Asif P, Longobardi C, Hahne M, Medema J
. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel). 2021; 13(18).
PMC: 8472587.
DOI: 10.3390/cancers13184720.
View
14.
Cremasco V, Astarita J, Grauel A, Keerthivasan S, MacIsaac K, Woodruff M
. FAP Delineates Heterogeneous and Functionally Divergent Stromal Cells in Immune-Excluded Breast Tumors. Cancer Immunol Res. 2018; 6(12):1472-1485.
PMC: 6597261.
DOI: 10.1158/2326-6066.CIR-18-0098.
View
15.
Hosonuma M, Yoshimura K
. Association between pH regulation of the tumor microenvironment and immunological state. Front Oncol. 2023; 13:1175563.
PMC: 10363976.
DOI: 10.3389/fonc.2023.1175563.
View
16.
Wu F, Yang J, Liu J, Wang Y, Mu J, Zeng Q
. Signaling pathways in cancer-associated fibroblasts and targeted therapy for cancer. Signal Transduct Target Ther. 2021; 6(1):218.
PMC: 8190181.
DOI: 10.1038/s41392-021-00641-0.
View
17.
Agorku D, Langhammer A, Heider U, Wild S, Bosio A, Hardt O
. CD49b, CD87, and CD95 Are Markers for Activated Cancer-Associated Fibroblasts Whereas CD39 Marks Quiescent Normal Fibroblasts in Murine Tumor Models. Front Oncol. 2019; 9:716.
PMC: 6690267.
DOI: 10.3389/fonc.2019.00716.
View
18.
Ding B, Zheng P, Tan J, Chen H, Meng Q, Li J
. Sodium Bicarbonate Nanoparticles for Amplified Cancer Immunotherapy by Inducing Pyroptosis and Regulating Lactic Acid Metabolism. Angew Chem Int Ed Engl. 2023; 62(40):e202307706.
DOI: 10.1002/anie.202307706.
View
19.
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C
. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy?. Cancers (Basel). 2021; 13(14).
PMC: 8303391.
DOI: 10.3390/cancers13143466.
View
20.
Matsui T, Toda Y, Sato H, Itagaki R, Konishi K, Moshnikova A
. Targeting acidic pre-metastatic niche in lungs by pH low insertion peptide and its utility for anti-metastatic therapy. Front Oncol. 2023; 13:1258442.
PMC: 10684925.
DOI: 10.3389/fonc.2023.1258442.
View