6.
Mara C, Huang T, Irish V
. The Arabidopsis floral homeotic proteins APETALA3 and PISTILLATA negatively regulate the BANQUO genes implicated in light signaling. Plant Cell. 2010; 22(3):690-702.
PMC: 2861465.
DOI: 10.1105/tpc.109.065946.
View
7.
Zachgo S, Silva E, Motte P, Trobner W, Saedler H, Schwarz-Sommer Z
. Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development. 1995; 121(9):2861-75.
DOI: 10.1242/dev.121.9.2861.
View
8.
Coen E, Meyerowitz E
. The war of the whorls: genetic interactions controlling flower development. Nature. 1991; 353(6339):31-7.
DOI: 10.1038/353031a0.
View
9.
Riechmann J, Wang M, Meyerowitz E
. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 1996; 24(16):3134-41.
PMC: 146081.
DOI: 10.1093/nar/24.16.3134.
View
10.
Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M
. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature. 2004; 430(6997):356-60.
DOI: 10.1038/nature02733.
View
11.
Spitzer-Rimon B, Marhevka E, Barkai O, Marton I, Edelbaum O, Masci T
. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. Plant Cell. 2010; 22(6):1961-76.
PMC: 2910970.
DOI: 10.1105/tpc.109.067280.
View
12.
Fenske M, Hewett Hazelton K, Hempton A, Shim J, Yamamoto B, Riffell J
. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Proc Natl Acad Sci U S A. 2015; 112(31):9775-80.
PMC: 4534231.
DOI: 10.1073/pnas.1422875112.
View
13.
Rueden C, Schindelin J, Hiner M, DeZonia B, Walter A, Arena E
. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics. 2017; 18(1):529.
PMC: 5708080.
DOI: 10.1186/s12859-017-1934-z.
View
14.
Verdonk J, de Vos C, Verhoeven H, Haring M, van Tunen A, Schuurink R
. Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry. 2003; 62(6):997-1008.
DOI: 10.1016/s0031-9422(02)00707-0.
View
15.
Boatright J, Negre F, Chen X, Kish C, Wood B, Peel G
. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 2004; 135(4):1993-2011.
PMC: 520771.
DOI: 10.1104/pp.104.045468.
View
16.
Shor E, Skaliter O, Sharon E, Kitsberg Y, Bednarczyk D, Kerzner S
. Developmental and temporal changes in petunia petal transcriptome reveal scent-repressing plant-specific RING-kinase-WD40 protein. Front Plant Sci. 2023; 14:1180899.
PMC: 10286513.
DOI: 10.3389/fpls.2023.1180899.
View
17.
Adebesin F, Widhalm J, Boachon B, Lefevre F, Pierman B, Lynch J
. Emission of volatile organic compounds from petunia flowers is facilitated by an ABC transporter. Science. 2017; 356(6345):1386-1388.
DOI: 10.1126/science.aan0826.
View
18.
Spitzer-Rimon B, Farhi M, Albo B, Cnaani A, Moyal Ben Zvi M, Masci T
. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. Plant Cell. 2013; 24(12):5089-105.
PMC: 3556977.
DOI: 10.1105/tpc.112.105247.
View
19.
Verdonk J, Haring M, van Tunen A, Schuurink R
. ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell. 2005; 17(5):1612-24.
PMC: 1091778.
DOI: 10.1105/tpc.104.028837.
View
20.
Purugganan M, Rounsley S, Schmidt R, Yanofsky M
. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics. 1995; 140(1):345-56.
PMC: 1206560.
DOI: 10.1093/genetics/140.1.345.
View