6.
Bunch F, Nair P, Aggarwala G, Dippel E, Kassab E, Khan M
. A universal drug delivery catheter for the treatment of infrapopliteal arterial disease using liquid therapy. Catheter Cardiovasc Interv. 2020; 96(2):393-401.
PMC: 7496530.
DOI: 10.1002/ccd.28739.
View
7.
Todd M, Liu L, Saul J, Yazdani S
. Pre-clinical investigation of liquid sirolimus for local drug delivery. Front Cardiovasc Med. 2023; 10:1184816.
PMC: 10540618.
DOI: 10.3389/fcvm.2023.1184816.
View
8.
Mohanta M, Ramdhun Y, Thirugnanam A, Gupta R, Verma D, Deepak T
. Biodegradable AZ91 magnesium alloy/sirolimus/poly D, L-lactic-co-glycolic acid-based substrate for cardiovascular device application. J Biomed Mater Res B Appl Biomater. 2023; 112(1):e35350.
DOI: 10.1002/jbm.b.35350.
View
9.
Werner M, Schmidt A, Scheinert S, Banning-Eichenseer U, Ulrich M, Bausback Y
. Evaluation of the Biodegradable Igaki-Tamai Scaffold After Drug-Eluting Balloon Treatment of De Novo Superficial Femoral Artery Lesions: The GAIA-DEB Study. J Endovasc Ther. 2015; 23(1):92-7.
DOI: 10.1177/1526602815620618.
View
10.
Dake M, Ansel G, Jaff M, Ohki T, Saxon R, Smouse H
. Durable Clinical Effectiveness With Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation. 2016; 133(15):1472-83.
PMC: 4823823.
DOI: 10.1161/CIRCULATIONAHA.115.016900.
View
11.
Wessely R, Schomig A, Kastrati A
. Sirolimus and Paclitaxel on polymer-based drug-eluting stents: similar but different. J Am Coll Cardiol. 2006; 47(4):708-14.
DOI: 10.1016/j.jacc.2005.09.047.
View
12.
Kwon K, Kim J, Won S, Zhao J, Avila R, Wang H
. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat Biomed Eng. 2023; 7(10):1215-1228.
DOI: 10.1038/s41551-023-01022-4.
View
13.
Kornowski R, Hong M, Tio F, Bramwell O, Wu H, Leon M
. In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia. J Am Coll Cardiol. 1998; 31(1):224-30.
DOI: 10.1016/s0735-1097(97)00450-6.
View
14.
Pappalardo D, Mathisen T, Finne-Wistrand A
. Biocompatibility of Resorbable Polymers: A Historical Perspective and Framework for the Future. Biomacromolecules. 2019; 20(4):1465-1477.
DOI: 10.1021/acs.biomac.9b00159.
View
15.
Dinc R
. A review of the current state in neointimal hyperplasia development following endovascular intervention and minor emphasis on new horizons in immunotherapy. Transl Clin Pharmacol. 2024; 31(4):191-201.
PMC: 10772059.
DOI: 10.12793/tcp.2023.31.e18.
View
16.
Wiebe J, Nef H, Hamm C
. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. J Am Coll Cardiol. 2014; 64(23):2541-51.
DOI: 10.1016/j.jacc.2014.09.041.
View
17.
Bradbury A, Moakes C, Popplewell M, Meecham L, Bate G, Kelly L
. A vein bypass first versus a best endovascular treatment first revascularisation strategy for patients with chronic limb threatening ischaemia who required an infra-popliteal, with or without an additional more proximal infra-inguinal.... Lancet. 2023; 401(10390):1798-1809.
DOI: 10.1016/S0140-6736(23)00462-2.
View
18.
Song P, Rudan D, Zhu Y, Fowkes F, Rahimi K, Fowkes F
. Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health. 2019; 7(8):e1020-e1030.
DOI: 10.1016/S2214-109X(19)30255-4.
View
19.
Farber A, Menard M, Conte M, Kaufman J, Powell R, Choudhry N
. Surgery or Endovascular Therapy for Chronic Limb-Threatening Ischemia. N Engl J Med. 2022; 387(25):2305-2316.
DOI: 10.1056/NEJMoa2207899.
View
20.
Kolandaivelu K, Swaminathan R, Gibson W, Kolachalama V, Nguyen-Ehrenreich K, Giddings V
. Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings. Circulation. 2011; 123(13):1400-9.
PMC: 3131199.
DOI: 10.1161/CIRCULATIONAHA.110.003210.
View