6.
Ou B, Saouaf O, Yan J, Bruun T, Baillet J, Zhou X
. Broad and Durable Humoral Responses Following Single Hydrogel Immunization of SARS-CoV-2 Subunit Vaccine. Adv Healthc Mater. 2023; 12(28):e2301495.
DOI: 10.1002/adhm.202301495.
View
7.
Ou B, Baillet J, Picece V, Gale E, Powell A, Saouaf O
. Nanoparticle-Conjugated Toll-Like Receptor 9 Agonists Improve the Potency, Durability, and Breadth of COVID-19 Vaccines. ACS Nano. 2024; 18(4):3214-3233.
PMC: 10832347.
DOI: 10.1021/acsnano.3c09700.
View
8.
Hoyle C, Bowman C
. Thiol-ene click chemistry. Angew Chem Int Ed Engl. 2010; 49(9):1540-73.
DOI: 10.1002/anie.200903924.
View
9.
Kolb H, Finn M, Sharpless K
. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001; 40(11):2004-2021.
DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
View
10.
Li J, Mooney D
. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2018; 1(12).
PMC: 5898614.
DOI: 10.1038/natrevmats.2016.71.
View
11.
Riley L, Schirmer L, Segura T
. Granular hydrogels: emergent properties of jammed hydrogel microparticles and their applications in tissue repair and regeneration. Curr Opin Biotechnol. 2018; 60:1-8.
PMC: 6534490.
DOI: 10.1016/j.copbio.2018.11.001.
View
12.
Slaughter B, Khurshid S, Fisher O, Khademhosseini A, Peppas N
. Hydrogels in regenerative medicine. Adv Mater. 2010; 21(32-33):3307-29.
PMC: 4494665.
DOI: 10.1002/adma.200802106.
View
13.
Appel E, Tibbitt M, Greer J, Fenton O, Kreuels K, Anderson D
. Exploiting Electrostatic Interactions in Polymer-Nanoparticle Hydrogels. ACS Macro Lett. 2022; 4(8):848-852.
DOI: 10.1021/acsmacrolett.5b00416.
View
14.
Wang H, Zhu D, Paul A, Cai L, Enejder A, Yang F
. Covalently adaptable elastin-like protein - hyaluronic acid (ELP - HA) hybrid hydrogels with secondary thermoresponsive crosslinking for injectable stem cell delivery. Adv Funct Mater. 2020; 27(28).
PMC: 7546546.
DOI: 10.1002/adfm.201605609.
View
15.
Grosskopf A, Roth G, Smith A, Gale E, Lopez Hernandez H, Appel E
. Injectable supramolecular polymer-nanoparticle hydrogels enhance human mesenchymal stem cell delivery. Bioeng Transl Med. 2020; 5(1):e10147.
PMC: 6971438.
DOI: 10.1002/btm2.10147.
View
16.
Saouaf O, Roth G, Ou B, Smith A, Yu A, Gale E
. Modulation of injectable hydrogel properties for slow co-delivery of influenza subunit vaccine components enhance the potency of humoral immunity. J Biomed Mater Res A. 2021; 109(11):2173-2186.
PMC: 8518857.
DOI: 10.1002/jbm.a.37203.
View
17.
Appel E, Tibbitt M, Webber M, Mattix B, Veiseh O, Langer R
. Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun. 2015; 6:6295.
PMC: 4651845.
DOI: 10.1038/ncomms7295.
View
18.
Rizzo F, Kehr N
. Recent Advances in Injectable Hydrogels for Controlled and Local Drug Delivery. Adv Healthc Mater. 2020; 10(1):e2001341.
DOI: 10.1002/adhm.202001341.
View
19.
Cai P, Su B, Zou L, Webber M, Heilshorn S, Spakowitz A
. Rheological Characterization and Theoretical Modeling Establish Molecular Design Rules for Tailored Dynamically Associating Polymers. ACS Cent Sci. 2022; 8(9):1318-1327.
PMC: 9523779.
DOI: 10.1021/acscentsci.2c00432.
View
20.
Grosskopf A, Mann J, Baillet J, Lopez Hernandez H, Autzen A, Yu A
. Extreme Extensibility in Physically Cross-Linked Nanocomposite Hydrogels Leveraging Dynamic Polymer-Nanoparticle Interactions. Macromolecules. 2022; 55(17):7498-7511.
PMC: 9476865.
DOI: 10.1021/acs.macromol.2c00649.
View