» Articles » PMID: 39898598

A Thiol-ene Click-based Strategy to Customize Injectable Polymer-nanoparticle Hydrogel Properties for Therapeutic Delivery

Overview
Journal Biomater Sci
Date 2025 Feb 3
PMID 39898598
Authors
Affiliations
Soon will be listed here.
Abstract

Polymer-nanoparticle (PNP) hydrogels are a promising injectable biomaterial platform that has been used for a wide range of biomedical applications including adhesion prevention, adoptive cell delivery, and controlled drug release. By tuning the chemical, mechanical, and erosion properties of injected hydrogel depots, additional control over cell compatibility and pharmaceutical release kinetics may be realized. Here, we employ thiol-ene click chemistry to prepare a library of modified hydroxypropylmethylcellulose (HPMC) derivatives for subsequent use in PNP hydrogel applications. When combined with poly(ethylene glycol)--poly(lactic acid) nanoparticles, we demonstrate that systematically altering the hydrophobic, steric, or pi stacking character of HPMC modifications can readily tailor the mechanical properties of PNP hydrogels. Additionally, we highlight the compatibility of the synthetic platform for the incorporation of cysteine-bearing peptides to access PNP hydrogels with improved bioactivity. Finally, through leveraging the tunable physical properties afforded by this method, we show hydrogel retention time can be dramatically altered without sacrificing mesh size or cargo diffusion rates. This work offers a route to optimize PNP hydrogels for a variety of translational applications and holds promise in the highly tunable delivery of pharmaceuticals and adoptive cells.

References
1.
Marco-Dufort B, Iten R, Tibbitt M . Linking Molecular Behavior to Macroscopic Properties in Ideal Dynamic Covalent Networks. J Am Chem Soc. 2020; 142(36):15371-15385. DOI: 10.1021/jacs.0c06192. View

2.
Foster A, Marquardt L, Heilshorn S . The Diverse Roles of Hydrogel Mechanics in Injectable Stem Cell Transplantation. Curr Opin Chem Eng. 2017; 15:15-23. PMC: 5659597. DOI: 10.1016/j.coche.2016.11.003. View

3.
dAquino A, Maikawa C, Nguyen L, Lu K, Hall I, Jons C . Use of a biomimetic hydrogel depot technology for sustained delivery of GLP-1 receptor agonists reduces burden of diabetes management. Cell Rep Med. 2023; 4(11):101292. PMC: 10694761. DOI: 10.1016/j.xcrm.2023.101292. View

4.
Li C, Ma J, Fan Q, Tao Y, Li G . Dynamic light scattering (DLS)-based immunoassay for ultra-sensitive detection of tumor marker protein. Chem Commun (Camb). 2016; 52(50):7850-3. DOI: 10.1039/c6cc02633h. View

5.
Bertsch P, Diba M, Mooney D, Leeuwenburgh S . Self-Healing Injectable Hydrogels for Tissue Regeneration. Chem Rev. 2022; 123(2):834-873. PMC: 9881015. DOI: 10.1021/acs.chemrev.2c00179. View