6.
Paulsen B, Velasco S, Kedaigle A, Pigoni M, Quadrato G, Deo A
. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022; 602(7896):268-273.
PMC: 8852827.
DOI: 10.1038/s41586-021-04358-6.
View
7.
Bai D, Yip B, Windham G, Sourander A, Francis R, Yoffe R
. Association of Genetic and Environmental Factors With Autism in a 5-Country Cohort. JAMA Psychiatry. 2019; 76(10):1035-1043.
PMC: 6646998.
DOI: 10.1001/jamapsychiatry.2019.1411.
View
8.
Rockowitz S, Zheng D
. Significant expansion of the REST/NRSF cistrome in human versus mouse embryonic stem cells: potential implications for neural development. Nucleic Acids Res. 2015; 43(12):5730-43.
PMC: 4499139.
DOI: 10.1093/nar/gkv514.
View
9.
Mattick J, Amaral P, Carninci P, Carpenter S, Chang H, Chen L
. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023; 24(6):430-447.
PMC: 10213152.
DOI: 10.1038/s41580-022-00566-8.
View
10.
Wei J, Lotfy P, Faizi K, Baungaard S, Gibson E, Wang E
. Deep learning and CRISPR-Cas13d ortholog discovery for optimized RNA targeting. Cell Syst. 2023; 14(12):1087-1102.e13.
DOI: 10.1016/j.cels.2023.11.006.
View
11.
Noor A, Whibley A, Marshall C, Gianakopoulos P, Piton A, Carson A
. Disruption at the PTCHD1 Locus on Xp22.11 in Autism spectrum disorder and intellectual disability. Sci Transl Med. 2010; 2(49):49ra68.
PMC: 2987731.
DOI: 10.1126/scitranslmed.3001267.
View
12.
Ang C, Ma Q, Wapinski O, Fan S, Flynn R, Lee Q
. The novel lncRNA is pro-neurogenic and mutated in human neurodevelopmental disorders. Elife. 2019; 8.
PMC: 6380841.
DOI: 10.7554/eLife.41770.
View
13.
Wang Y, Chen S, Li W, Jiang R, Wang Y
. Associating divergent lncRNAs with target genes by integrating genome sequence, gene expression and chromatin accessibility data. NAR Genom Bioinform. 2021; 2(2):lqaa019.
PMC: 7671357.
DOI: 10.1093/nargab/lqaa019.
View
14.
Werling D, Parikshak N, Geschwind D
. Gene expression in human brain implicates sexually dimorphic pathways in autism spectrum disorders. Nat Commun. 2016; 7:10717.
PMC: 4762891.
DOI: 10.1038/ncomms10717.
View
15.
Katayama Y, Nishiyama M, Shoji H, Ohkawa Y, Kawamura A, Sato T
. CHD8 haploinsufficiency results in autistic-like phenotypes in mice. Nature. 2016; 537(7622):675-679.
DOI: 10.1038/nature19357.
View
16.
Boukas L, Havrilla J, Hickey P, Quinlan A, Bjornsson H, Hansen K
. Coexpression patterns define epigenetic regulators associated with neurological dysfunction. Genome Res. 2019; 29(4):532-542.
PMC: 6442390.
DOI: 10.1101/gr.239442.118.
View
17.
Zhang P, Omanska A, Ander B, Gandal M, Stamova B, Schumann C
. Neuron-specific transcriptomic signatures indicate neuroinflammation and altered neuronal activity in ASD temporal cortex. Proc Natl Acad Sci U S A. 2023; 120(10):e2206758120.
PMC: 10013873.
DOI: 10.1073/pnas.2206758120.
View
18.
Grove J, Ripke S, Als T, Mattheisen M, Walters R, Won H
. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019; 51(3):431-444.
PMC: 6454898.
DOI: 10.1038/s41588-019-0344-8.
View
19.
Weinschutz Mendes H, Neelakantan U, Liu Y, Fitzpatrick S, Chen T, Wu W
. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep. 2023; 42(3):112243.
PMC: 10277173.
DOI: 10.1016/j.celrep.2023.112243.
View
20.
Kalkman H
. A review of the evidence for the canonical Wnt pathway in autism spectrum disorders. Mol Autism. 2012; 3(1):10.
PMC: 3492093.
DOI: 10.1186/2040-2392-3-10.
View