Loschmidt Echo for Deformed Wigner Matrices
Overview
Overview
Authors
Affiliations
Affiliations
Soon will be listed here.
Abstract
We consider two Hamiltonians that are close to each other, , and analyze the time decay of the corresponding that expresses the effect of an imperfect time reversal on the initial state . Our model Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws for such and .
References
1.
Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K
. Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics. Phys Rev Lett. 2016; 117(1):013001.
DOI: 10.1103/PhysRevLett.117.013001.
View
2.
Cipolloni G, Erdos L, Schroder D
. Edge universality for non-Hermitian random matrices. Probab Theory Relat Fields. 2021; 179(1):1-28.
PMC: 7906960.
DOI: 10.1007/s00440-020-01003-7.
View
3.
Chenu A, Egusquiza I, Molina-Vilaplana J, Del Campo A
. Quantum work statistics, Loschmidt echo and information scrambling. Sci Rep. 2018; 8(1):12634.
PMC: 6105685.
DOI: 10.1038/s41598-018-30982-w.
View
4.
Erdos L, Riabov V
. Eigenstate Thermalization Hypothesis for Wigner-Type Matrices. Commun Math Phys. 2024; 405(12):282.
PMC: 11541313.
DOI: 10.1007/s00220-024-05143-y.
View
5.
Vanicek J, Cohen D
. Path integral approach to the quantum fidelity amplitude. Philos Trans A Math Phys Eng Sci. 2016; 374(2069).
PMC: 4855403.
DOI: 10.1098/rsta.2015.0164.
View