» Articles » PMID: 39896265

Loschmidt Echo for Deformed Wigner Matrices

Overview
Journal Lett Math Phys
Publisher Springer
Date 2025 Feb 3
PMID 39896265
Authors
Affiliations
Soon will be listed here.
Abstract

We consider two Hamiltonians that are close to each other, , and analyze the time decay of the corresponding that expresses the effect of an imperfect time reversal on the initial state . Our model Hamiltonians are deformed Wigner matrices that do not share a common eigenbasis. The main tools are new two-resolvent laws for such and .

References
1.
Linnemann D, Strobel H, Muessel W, Schulz J, Lewis-Swan R, Kheruntsyan K . Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics. Phys Rev Lett. 2016; 117(1):013001. DOI: 10.1103/PhysRevLett.117.013001. View

2.
Cipolloni G, Erdos L, Schroder D . Edge universality for non-Hermitian random matrices. Probab Theory Relat Fields. 2021; 179(1):1-28. PMC: 7906960. DOI: 10.1007/s00440-020-01003-7. View

3.
Chenu A, Egusquiza I, Molina-Vilaplana J, Del Campo A . Quantum work statistics, Loschmidt echo and information scrambling. Sci Rep. 2018; 8(1):12634. PMC: 6105685. DOI: 10.1038/s41598-018-30982-w. View

4.
Erdos L, Riabov V . Eigenstate Thermalization Hypothesis for Wigner-Type Matrices. Commun Math Phys. 2024; 405(12):282. PMC: 11541313. DOI: 10.1007/s00220-024-05143-y. View

5.
Vanicek J, Cohen D . Path integral approach to the quantum fidelity amplitude. Philos Trans A Math Phys Eng Sci. 2016; 374(2069). PMC: 4855403. DOI: 10.1098/rsta.2015.0164. View