6.
Ye H, Fussenegger M
. Optogenetic Medicine: Synthetic Therapeutic Solutions Precision-Guided by Light. Cold Spring Harb Perspect Med. 2018; 9(9).
PMC: 6719591.
DOI: 10.1101/cshperspect.a034371.
View
7.
Vuckovic A, Tosato M, Struijk J
. A comparative study of three techniques for diameter selective fiber activation in the vagal nerve: anodal block, depolarizing prepulses and slowly rising pulses. J Neural Eng. 2008; 5(3):275-86.
DOI: 10.1088/1741-2560/5/3/002.
View
8.
Sokal D, McSloy A, Donega M, Kirk J, Colas R, Dolezalova N
. Splenic Nerve Neuromodulation Reduces Inflammation and Promotes Resolution in Chronically Implanted Pigs. Front Immunol. 2021; 12:649786.
PMC: 8043071.
DOI: 10.3389/fimmu.2021.649786.
View
9.
Yuan P, Bellier J, Li T, Kwaan M, Kimura H, Tache Y
. Intrinsic cholinergic innervation in the human sigmoid colon revealed using CLARITY, three-dimensional (3D) imaging, and a novel anti-human peripheral choline acetyltransferase (hpChAT) antiserum. Neurogastroenterol Motil. 2020; 33(4):e14030.
PMC: 8126258.
DOI: 10.1111/nmo.14030.
View
10.
Johnson R, Wilson C
. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res. 2018; 11:203-213.
PMC: 5961632.
DOI: 10.2147/JIR.S163248.
View
11.
Donega M, Fjordbakk C, Kirk J, Sokal D, Gupta I, Hunsberger G
. Human-relevant near-organ neuromodulation of the immune system via the splenic nerve. Proc Natl Acad Sci U S A. 2021; 118(20).
PMC: 8157920.
DOI: 10.1073/pnas.2025428118.
View
12.
Jayaprakash N, Song W, Toth V, Vardhan A, Levy T, Tomaio J
. Organ- and function-specific anatomical organization of vagal fibers supports fascicular vagus nerve stimulation. Brain Stimul. 2023; 16(2):484-506.
PMC: 10228508.
DOI: 10.1016/j.brs.2023.02.003.
View
13.
Stanslaski S, Herron J, Chouinard T, Bourget D, Isaacson B, Kremen V
. A Chronically Implantable Neural Coprocessor for Investigating the Treatment of Neurological Disorders. IEEE Trans Biomed Circuits Syst. 2018; 12(6):1230-1245.
PMC: 6415546.
DOI: 10.1109/TBCAS.2018.2880148.
View
14.
Pavlov V, Tracey K
. Bioelectronic medicine: Preclinical insights and clinical advances. Neuron. 2022; 110(21):3627-3644.
PMC: 10155266.
DOI: 10.1016/j.neuron.2022.09.003.
View
15.
Guo W, Shapiro K, Wang Z, Armann K, Shen B, Wang J
. Restoring both continence and micturition after chronic spinal cord injury by pudendal neuromodulation. Exp Neurol. 2021; 340:113658.
DOI: 10.1016/j.expneurol.2021.113658.
View
16.
Mekhail N, Levy R, Deer T, Kapural L, Li S, Amirdelfan K
. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 2019; 19(2):123-134.
DOI: 10.1016/S1474-4422(19)30414-4.
View
17.
Osanlouy M, Bandrowski A, de Bono B, Brooks D, Cassara A, Christie R
. The SPARC DRC: Building a Resource for the Autonomic Nervous System Community. Front Physiol. 2021; 12:693735.
PMC: 8265045.
DOI: 10.3389/fphys.2021.693735.
View
18.
Berthon A, Wernisch L, Stoukidi M, Thornton M, Tessier-Lariviere O, Fortier-Poisson P
. Using neural biomarkers to personalize dosing of vagus nerve stimulation. Bioelectron Med. 2024; 10(1):15.
PMC: 11181600.
DOI: 10.1186/s42234-024-00147-4.
View
19.
Majerus S, Offutt S, Brink T, Vasoli V, Mcadams I, Damaser M
. Feasibility of Real-Time Conditional Sacral Neuromodulation Using Wireless Bladder Pressure Sensor. IEEE Trans Neural Syst Rehabil Eng. 2021; 29:2067-2075.
PMC: 9359615.
DOI: 10.1109/TNSRE.2021.3117518.
View
20.
Kulju T, Verner R, Dibue-Adjei M, Eronen A, Rainesalo S, Lehtimaki K
. Circadian distribution of autostimulations in rVNS therapy in patients with refractory focal epilepsy. Epilepsy Behav. 2020; 110:107144.
DOI: 10.1016/j.yebeh.2020.107144.
View