6.
Shi S, Alimu P, Mahemut P
. The Study of Echocardiography of Left Ventricle Segmentation Combining Transformer and Convolutional Neural Networks. Int Heart J. 2024; 65(5):889-897.
DOI: 10.1536/ihj.23-638.
View
7.
Bachtiger P, Petri C, Scott F, Park S, Kelshiker M, Sahemey H
. Point-of-care screening for heart failure with reduced ejection fraction using artificial intelligence during ECG-enabled stethoscope examination in London, UK: a prospective, observational, multicentre study. Lancet Digit Health. 2022; 4(2):e117-e125.
PMC: 8789562.
DOI: 10.1016/S2589-7500(21)00256-9.
View
8.
Solomon S, Anavekar N, Skali H, McMurray J, Swedberg K, Yusuf S
. Influence of ejection fraction on cardiovascular outcomes in a broad spectrum of heart failure patients. Circulation. 2005; 112(24):3738-44.
DOI: 10.1161/CIRCULATIONAHA.105.561423.
View
9.
Ahn S, Ta K, Thorn S, Langdon J, Sinusas A, Duncan J
. Multi-frame Attention Network for Left Ventricle Segmentation in 3D Echocardiography. Med Image Comput Comput Assist Interv. 2021; 12901:348-357.
PMC: 8560213.
DOI: 10.1007/978-3-030-87193-2_33.
View
10.
Zeng Y, Tsui P, Pang K, Bin G, Li J, Lv K
. MAEF-Net: Multi-attention efficient feature fusion network for left ventricular segmentation and quantitative analysis in two-dimensional echocardiography. Ultrasonics. 2022; 127:106855.
DOI: 10.1016/j.ultras.2022.106855.
View
11.
Hernandez K, Rienmuller T, Baumgartner D, Baumgartner C
. Deep learning in spatiotemporal cardiac imaging: A review of methodologies and clinical usability. Comput Biol Med. 2021; 130:104200.
DOI: 10.1016/j.compbiomed.2020.104200.
View
12.
Wang Z, Chen X, Tan X, Yang L, Kannapur K, Vincent J
. Using Deep Learning to Identify High-Risk Patients with Heart Failure with Reduced Ejection Fraction. J Health Econ Outcomes Res. 2021; 8(2):6-13.
PMC: 8322198.
DOI: 10.36469/jheor.2021.25753.
View
13.
Nosir Y, Vletter W, Boersma E, Frowijn R, Ten Cate F, Fioretti P
. The apical long-axis rather than the two-chamber view should be used in combination with the four-chamber view for accurate assessment of left ventricular volumes and function. Eur Heart J. 1997; 18(7):1175-85.
DOI: 10.1093/oxfordjournals.eurheartj.a015414.
View
14.
Khan R, Lee B, Lee M
. Transformers in medical image segmentation: a narrative review. Quant Imaging Med Surg. 2023; 13(12):8747-8767.
PMC: 10722011.
DOI: 10.21037/qims-23-542.
View
15.
Voorhees A, Han H
. Biomechanics of Cardiac Function. Compr Physiol. 2015; 5(4):1623-44.
PMC: 4668273.
DOI: 10.1002/cphy.c140070.
View
16.
Wang Y, Ng K, Byrd R, Hu J, Ebadollahi S, Daar Z
. Early detection of heart failure with varying prediction windows by structured and unstructured data in electronic health records. Annu Int Conf IEEE Eng Med Biol Soc. 2016; 2015:2530-3.
PMC: 5233460.
DOI: 10.1109/EMBC.2015.7318907.
View
17.
Celutkiene J, Pudil R, Lopez-Fernandez T, Grapsa J, Nihoyannopoulos P, Bergler-Klein J
. Role of cardiovascular imaging in cancer patients receiving cardiotoxic therapies: a position statement on behalf of the Heart Failure Association (HFA), the European Association of Cardiovascular Imaging (EACVI) and the Cardio-Oncology Council of.... Eur J Heart Fail. 2020; 22(9):1504-1524.
DOI: 10.1002/ejhf.1957.
View
18.
Gu R, Wang G, Song T, Huang R, Aertsen M, Deprest J
. CA-Net: Comprehensive Attention Convolutional Neural Networks for Explainable Medical Image Segmentation. IEEE Trans Med Imaging. 2020; 40(2):699-711.
PMC: 7611411.
DOI: 10.1109/TMI.2020.3035253.
View
19.
Blaivas M, Blaivas L
. Machine learning algorithm using publicly available echo database for simplified "visual estimation" of left ventricular ejection fraction. World J Exp Med. 2022; 12(2):16-25.
PMC: 8968469.
DOI: 10.5493/wjem.v12.i2.16.
View
20.
Hirata K, Hyodo E, Hozumi T, Kita R, Hirose M, Sakanoue Y
. Usefulness of a combination of systolic function by left ventricular ejection fraction and diastolic function by E/E' to predict prognosis in patients with heart failure. Am J Cardiol. 2009; 103(9):1275-9.
DOI: 10.1016/j.amjcard.2009.01.024.
View