» Articles » PMID: 39896038

EFNet: Estimation of Left Ventricular Ejection Fraction from Cardiac Ultrasound Videos Using Deep Learning

Overview
Date 2025 Feb 3
PMID 39896038
Authors
Affiliations
Soon will be listed here.
Abstract

The ejection fraction (EF) is a vital metric for assessing cardiovascular function through cardiac ultrasound. Manual evaluation is time-consuming and exhibits high variability among observers. Deep-learning techniques offer precise and autonomous EF predictions, yet these methods often lack explainability. Accurate heart failure prediction using cardiac ultrasound is challenging due to operator dependency and inconsistent video quality, resulting in significant interobserver variability. To address this, we developed a method integrating convolutional neural networks (CNN) and transformer models for direct EF estimation from ultrasound video scans. This article introduces a Residual Transformer Module (RTM) that extends a 3D ResNet-based network to analyze (2D + t) spatiotemporal cardiac ultrasound video scans. The proposed method, EFNet, utilizes cardiac ultrasound video images for end-to-end EF value prediction. Performance evaluation on the EchoNet-Dynamic dataset yielded a mean absolute error (MAE) of 3.7 and an R2 score of 0.82. Experimental results demonstrate that EFNet outperforms state-of-the-art techniques, providing accurate EF predictions.

References
1.
Wei H, Ma J, Zhou Y, Xue W, Ni D . Co-learning of appearance and shape for precise ejection fraction estimation from echocardiographic sequences. Med Image Anal. 2022; 84:102686. DOI: 10.1016/j.media.2022.102686. View

2.
Faust O, Rajendra Acharya U, Sudarshan V, Tan R, Yeong C, Molinari F . Computer aided diagnosis of Coronary Artery Disease, Myocardial Infarction and carotid atherosclerosis using ultrasound images: A review. Phys Med. 2016; 33:1-15. DOI: 10.1016/j.ejmp.2016.12.005. View

3.
Jafari M, Girgis H, Van Woudenberg N, Liao Z, Rohling R, Gin K . Automatic biplane left ventricular ejection fraction estimation with mobile point-of-care ultrasound using multi-task learning and adversarial training. Int J Comput Assist Radiol Surg. 2019; 14(6):1027-1037. DOI: 10.1007/s11548-019-01954-w. View

4.
Dai W, Li X, Ding X, Cheng K . Cyclical Self-Supervision for Semi-Supervised Ejection Fraction Prediction From Echocardiogram Videos. IEEE Trans Med Imaging. 2023; 42(5):1446-1461. DOI: 10.1109/TMI.2022.3229136. View

5.
Adekkanattu P, Rasmussen L, Pacheco J, Kabariti J, Stone D, Yu Y . Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study. Sci Rep. 2023; 13(1):294. PMC: 9822934. DOI: 10.1038/s41598-023-27493-8. View