6.
Narita T, Ito S, Higashijima Y, Chu W, Neumann K, Walter J
. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol Cell. 2021; 81(10):2166-2182.e6.
DOI: 10.1016/j.molcel.2021.03.008.
View
7.
Faiola F, Liu X, Lo S, Pan S, Zhang K, Lymar E
. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol. 2005; 25(23):10220-34.
PMC: 1291249.
DOI: 10.1128/MCB.25.23.10220-10234.2005.
View
8.
Iyer N, Ozdag H, Caldas C
. p300/CBP and cancer. Oncogene. 2004; 23(24):4225-31.
DOI: 10.1038/sj.onc.1207118.
View
9.
Welti J, Sharp A, Brooks N, Yuan W, McNair C, Chand S
. Targeting the p300/CBP Axis in Lethal Prostate Cancer. Cancer Discov. 2021; 11(5):1118-1137.
PMC: 8102310.
DOI: 10.1158/2159-8290.CD-20-0751.
View
10.
Giotopoulos G, Chan W, Horton S, Ruau D, Gallipoli P, Fowler A
. The epigenetic regulators CBP and p300 facilitate leukemogenesis and represent therapeutic targets in acute myeloid leukemia. Oncogene. 2015; 35(3):279-89.
PMC: 4729186.
DOI: 10.1038/onc.2015.92.
View
11.
Chen Q, Yang B, Liu X, Zhang X, Zhang L, Liu T
. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents. Theranostics. 2022; 12(11):4935-4948.
PMC: 9274749.
DOI: 10.7150/thno.73223.
View
12.
Khoury J, Solary E, Abla O, Akkari Y, Alaggio R, Apperley J
. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022; 36(7):1703-1719.
PMC: 9252913.
DOI: 10.1038/s41375-022-01613-1.
View
13.
Wysota M, Konopleva M, Mitchell S
. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep. 2024; 26(4):409-420.
PMC: 11021231.
DOI: 10.1007/s11912-024-01503-y.
View
14.
Kitabayashi I, Aikawa Y, Yokoyama A, Hosoda F, Nagai M, Kakazu N
. Fusion of MOZ and p300 histone acetyltransferases in acute monocytic leukemia with a t(8;22)(p11;q13) chromosome translocation. Leukemia. 2001; 15(1):89-94.
DOI: 10.1038/sj.leu.2401983.
View
15.
Taki T, Sako M, Tsuchida M, Hayashi Y
. The t(11;16)(q23;p13) translocation in myelodysplastic syndrome fuses the MLL gene to the CBP gene. Blood. 1997; 89(11):3945-50.
View
16.
Ida K, Kitabayashi I, Taki T, Taniwaki M, Noro K, Yamamoto M
. Adenoviral E1A-associated protein p300 is involved in acute myeloid leukemia with t(11;22)(q23;q13). Blood. 1998; 90(12):4699-704.
View
17.
Wang L, Gural A, Sun X, Zhao X, Perna F, Huang G
. The leukemogenicity of AML1-ETO is dependent on site-specific lysine acetylation. Science. 2011; 333(6043):765-9.
PMC: 3251012.
DOI: 10.1126/science.1201662.
View
18.
Roe J, Mercan F, Rivera K, Pappin D, Vakoc C
. BET Bromodomain Inhibition Suppresses the Function of Hematopoietic Transcription Factors in Acute Myeloid Leukemia. Mol Cell. 2015; 58(6):1028-39.
PMC: 4475489.
DOI: 10.1016/j.molcel.2015.04.011.
View
19.
Hay D, Fedorov O, Martin S, Singleton D, Tallant C, Wells C
. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J Am Chem Soc. 2014; 136(26):9308-19.
PMC: 4183655.
DOI: 10.1021/ja412434f.
View
20.
Taylor A, Cote A, Hewitt M, Pastor R, LeBlanc Y, Nasveschuk C
. Fragment-Based Discovery of a Selective and Cell-Active Benzodiazepinone CBP/EP300 Bromodomain Inhibitor (CPI-637). ACS Med Chem Lett. 2016; 7(5):531-6.
PMC: 4867486.
DOI: 10.1021/acsmedchemlett.6b00075.
View