6.
Fraile J, Palliyil S, Barelle C, Porter A, Kovaleva M
. Non-Alcoholic Steatohepatitis (NASH) - A Review of a Crowded Clinical Landscape, Driven by a Complex Disease. Drug Des Devel Ther. 2021; 15:3997-4009.
PMC: 8473845.
DOI: 10.2147/DDDT.S315724.
View
7.
Harrison S, Bedossa P, Guy C, Schattenberg J, Loomba R, Taub R
. A Phase 3, Randomized, Controlled Trial of Resmetirom in NASH with Liver Fibrosis. N Engl J Med. 2024; 390(6):497-509.
DOI: 10.1056/NEJMoa2309000.
View
8.
Ogrodnik M, Miwa S, Tchkonia T, Tiniakos D, Wilson C, Lahat A
. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017; 8:15691.
PMC: 5474745.
DOI: 10.1038/ncomms15691.
View
9.
Meijnikman A, Herrema H, Scheithauer T, Kroon J, Nieuwdorp M, Groen A
. Evaluating causality of cellular senescence in non-alcoholic fatty liver disease. JHEP Rep. 2021; 3(4):100301.
PMC: 8170167.
DOI: 10.1016/j.jhepr.2021.100301.
View
10.
Papatheodoridi A, Chrysavgis L, Koutsilieris M, Chatzigeorgiou A
. The Role of Senescence in the Development of Nonalcoholic Fatty Liver Disease and Progression to Nonalcoholic Steatohepatitis. Hepatology. 2019; 71(1):363-374.
DOI: 10.1002/hep.30834.
View
11.
He Y, Zhang X, Chang J, Kim H, Zhang P, Wang Y
. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020; 11(1):1996.
PMC: 7181703.
DOI: 10.1038/s41467-020-15838-0.
View
12.
Robbins P, Jurk D, Khosla S, Kirkland J, LeBrasseur N, Miller J
. Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. Annu Rev Pharmacol Toxicol. 2020; 61:779-803.
PMC: 7790861.
DOI: 10.1146/annurev-pharmtox-050120-105018.
View
13.
Chang J, Wang Y, Shao L, Laberge R, Demaria M, Campisi J
. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2015; 22(1):78-83.
PMC: 4762215.
DOI: 10.1038/nm.4010.
View
14.
Jeon O, Kim C, Laberge R, Demaria M, Rathod S, Vasserot A
. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017; 23(6):775-781.
PMC: 5785239.
DOI: 10.1038/nm.4324.
View
15.
Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai H, Ling Y, Stout M
. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2015; 15(3):428-35.
PMC: 4854923.
DOI: 10.1111/acel.12445.
View
16.
Childs B, Baker D, Wijshake T, Conover C, Campisi J, van Deursen J
. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science. 2016; 354(6311):472-477.
PMC: 5112585.
DOI: 10.1126/science.aaf6659.
View
17.
Bussian T, Aziz A, Meyer C, Swenson B, van Deursen J, Baker D
. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018; 562(7728):578-582.
PMC: 6206507.
DOI: 10.1038/s41586-018-0543-y.
View
18.
Pan J, Li D, Xu Y, Zhang J, Wang Y, Chen M
. Inhibition of Bcl-2/xl With ABT-263 Selectively Kills Senescent Type II Pneumocytes and Reverses Persistent Pulmonary Fibrosis Induced by Ionizing Radiation in Mice. Int J Radiat Oncol Biol Phys. 2017; 99(2):353-361.
PMC: 6853175.
DOI: 10.1016/j.ijrobp.2017.02.216.
View
19.
Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S
. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016; 7:11190.
PMC: 4823827.
DOI: 10.1038/ncomms11190.
View
20.
Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A
. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun. 2018; 9(1):5435.
PMC: 6303397.
DOI: 10.1038/s41467-018-07825-3.
View