6.
Cai R, Wang M, Liu M, Zhu X, Feng L, Yu Z
. An iRGD-conjugated photothermal therapy-responsive gold nanoparticle system carrying siCDK7 induces necroptosis and immunotherapeutic responses in lung adenocarcinoma. Bioeng Transl Med. 2023; 8(4):e10430.
PMC: 10354770.
DOI: 10.1002/btm2.10430.
View
7.
Munter R, Stavnsbjerg C, Christensen E, Thomsen M, Stensballe A, Hansen A
. Unravelling Heterogeneities in Complement and Antibody Opsonization of Individual Liposomes as a Function of Surface Architecture. Small. 2022; 18(14):e2106529.
DOI: 10.1002/smll.202106529.
View
8.
Xu S, Xu Y, Solek N, Chen J, Gong F, Varley A
. Tumor-Tailored Ionizable Lipid Nanoparticles Facilitate IL-12 Circular RNA Delivery for Enhanced Lung Cancer Immunotherapy. Adv Mater. 2024; 36(29):e2400307.
DOI: 10.1002/adma.202400307.
View
9.
Cao L, Zhu Y, Wang W, Wang G, Zhang S, Cheng H
. Emerging Nano-Based Strategies Against Drug Resistance in Tumor Chemotherapy. Front Bioeng Biotechnol. 2021; 9:798882.
PMC: 8688801.
DOI: 10.3389/fbioe.2021.798882.
View
10.
Su Z, Dong S, Zhao S, Liu K, Tan Y, Jiang X
. Novel nanomedicines to overcome cancer multidrug resistance. Drug Resist Updat. 2021; 58:100777.
DOI: 10.1016/j.drup.2021.100777.
View
11.
Zhang C, Zhao Y, Zhang E, Jiang M, Zhi D, Chen H
. Co-delivery of paclitaxel and anti-VEGF siRNA by tripeptide lipid nanoparticle to enhance the anti-tumor activity for lung cancer therapy. Drug Deliv. 2020; 27(1):1397-1411.
PMC: 7594708.
DOI: 10.1080/10717544.2020.1827085.
View
12.
Yang Y, Liu X, Ma W, Xu Q, Chen G, Wang Y
. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials. 2020; 265:120456.
DOI: 10.1016/j.biomaterials.2020.120456.
View
13.
Alrbyawi H, Poudel I, Annaji M, Arnold R, Tiwari A, Jayachandra Babu R
. Recent Advancements of Stimuli-Responsive Targeted Liposomal Formulations for Cancer Drug Delivery. Pharm Nanotechnol. 2022; 10(1):3-23.
DOI: 10.2174/2211738510666220214102626.
View
14.
La-Beck N, Islam M, Markiewski M
. Nanoparticle-Induced Complement Activation: Implications for Cancer Nanomedicine. Front Immunol. 2021; 11:603039.
PMC: 7819852.
DOI: 10.3389/fimmu.2020.603039.
View
15.
Vaghasiya K, Ray E, Singh R, Jadhav K, Sharma A, Khan R
. Efficient, enzyme responsive and tumor receptor targeting gelatin nanoparticles decorated with concanavalin-A for site-specific and controlled drug delivery for cancer therapy. Mater Sci Eng C Mater Biol Appl. 2021; 123:112027.
DOI: 10.1016/j.msec.2021.112027.
View
16.
Sanaei M, Pourbagheri-Sigaroodi A, Kaveh V, Abolghasemi H, Ghaffari S, Momeny M
. Recent advances in immune checkpoint therapy in non-small cell lung cancer and opportunities for nanoparticle-based therapy. Eur J Pharmacol. 2021; 909:174404.
DOI: 10.1016/j.ejphar.2021.174404.
View
17.
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y
. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front Mol Biosci. 2020; 7:193.
PMC: 7468194.
DOI: 10.3389/fmolb.2020.00193.
View
18.
Ramirez L, Rihouey C, Chaubet F, Le Cerf D, Picton L
. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. J Chromatogr A. 2021; 1653:462404.
DOI: 10.1016/j.chroma.2021.462404.
View
19.
Karpuz M, Silindir-Gunay M, Ozer A, Ozturk S, Yanik H, Tuncel M
. Diagnostic and therapeutic evaluation of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur J Pharm Sci. 2020; 156:105576.
DOI: 10.1016/j.ejps.2020.105576.
View
20.
Hong Y, Che S, Hui B, Wang X, Zhang X, Ma H
. Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine. Drug Des Devel Ther. 2020; 14:2263-2274.
PMC: 7293387.
DOI: 10.2147/DDDT.S241291.
View