» Articles » PMID: 39884276

Male Secreted Short Glycoproteins Link Sperm Competition to the Reproductive Isolation of Species

Overview
Journal Curr Biol
Publisher Cell Press
Date 2025 Jan 30
PMID 39884276
Authors
Affiliations
Soon will be listed here.
Abstract

Sperm competition is found across multicellular organisms using both external and internal fertilization. Sperm competition and post-copulatory cryptic female choice can promote incompatibility between species due to the antagonistic coevolution of the sexes within a species. This between-species incompatibility is accelerated and markedly asymmetrical when sexual mode differs, producing the "weak inbreeder, strong outcrosser" (WISO) pattern. Here, we show that male secreted short (MSS) sperm glycoproteins of nematodes constitute a gametic effector of WISO. In obligately outcrossing Caenorhabditis, MSS is dispensable for baseline fertility but required for intraspecific sperm competitiveness. MSS is lost in self-fertile lineages, likely as a response to selection for a hermaphrodite-biased sex ratio. Selfing hermaphrodites that mate with males of closely related outcrossing species are rapidly sterilized due to ovarian sperm invasion. The simplification of the male proteome in selfing species suggests that many factors could contribute to invasivity. However, restoration of just MSS to the self-fertile C. briggsae is sufficient to induce mild invasivity. Further, MSS+ sperm appear to derive their competitive advantage from this behavior, directly linking interspecies incompatibility with intraspecific competition. MSS-related proteins (MSRPs) remaining in the C. briggsae genome are similar in structure, expression, and localization to MSS but are not necessary for normal sperm competitiveness. Further, overexpression of the MSRP most similar to MSS, Cbr-MSRP-3, is insufficient to enhance competitiveness. We conclude that outcrossing species retain sperm competition factors that contribute to their reproductive isolation from selfing relatives that lost them.