6.
Alper H, Stephanopoulos G
. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng. 2007; 9(3):258-67.
DOI: 10.1016/j.ymben.2006.12.002.
View
7.
Wang L, Li N, Yu S, Zhou J
. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter. Bioresour Technol. 2022; 368:128320.
DOI: 10.1016/j.biortech.2022.128320.
View
8.
Zhu C, Chen J, Wang Y, Wang L, Guo X, Chen N
. Enhancing 5-aminolevulinic acid tolerance and production by engineering the antioxidant defense system of Escherichia coli. Biotechnol Bioeng. 2019; 116(8):2018-2028.
DOI: 10.1002/bit.26981.
View
9.
Gong Z, Nielsen J, Zhou Y
. Engineering Robustness of Microbial Cell Factories. Biotechnol J. 2017; 12(10).
DOI: 10.1002/biot.201700014.
View
10.
Shen Y, Liao Y, Lu Q, He X, Yan Z, Liu J
. ATP and NADPH engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid using CRISPRi. Biotechnol Biofuels. 2021; 14(1):100.
PMC: 8056492.
DOI: 10.1186/s13068-021-01954-6.
View
11.
Chen T, Wang J, Yang R, Li J, Lin M, Lin Z
. Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli. PLoS One. 2011; 6(1):e16228.
PMC: 3022760.
DOI: 10.1371/journal.pone.0016228.
View
12.
Shen Y, Niu F, Yan Z, Fong L, Huang Y, Liu J
. Recent Advances in Metabolically Engineered Microorganisms for the Production of Aromatic Chemicals Derived From Aromatic Amino Acids. Front Bioeng Biotechnol. 2020; 8:407.
PMC: 7214760.
DOI: 10.3389/fbioe.2020.00407.
View
13.
Qin L, Dong S, Yu J, Ning X, Xu K, Zhang S
. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng. 2020; 61:160-170.
DOI: 10.1016/j.ymben.2020.06.003.
View
14.
Shen Y, Fong L, Yan Z, Liu J
. Combining directed evolution of pathway enzymes and dynamic pathway regulation using a quorum-sensing circuit to improve the production of 4-hydroxyphenylacetic acid in . Biotechnol Biofuels. 2019; 12:94.
PMC: 6477704.
DOI: 10.1186/s13068-019-1438-3.
View
15.
Fontana J, Dong C, Kiattisewee C, Chavali V, Tickman B, Carothers J
. Effective CRISPRa-mediated control of gene expression in bacteria must overcome strict target site requirements. Nat Commun. 2020; 11(1):1618.
PMC: 7113249.
DOI: 10.1038/s41467-020-15454-y.
View
16.
Yan Z, Liang J, Niu F, Shen Y, Liu J
. Enhanced Production of Pterostilbene in Through Directed Evolution and Host Strain Engineering. Front Microbiol. 2021; 12:710405.
PMC: 8530161.
DOI: 10.3389/fmicb.2021.710405.
View
17.
Sariaslani F
. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol. 2007; 61:51-69.
DOI: 10.1146/annurev.micro.61.080706.093248.
View
18.
Cheng H, Sun Y, Chang H, Cui F, Xue H, Shen Y
. Compatible solutes adaptive alterations in Arthrobacter simplex during exposure to ethanol, and the effect of trehalose on the stress resistance and biotransformation performance. Bioprocess Biosyst Eng. 2020; 43(5):895-908.
DOI: 10.1007/s00449-020-02286-9.
View
19.
Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S
. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Appl Environ Microbiol. 2015; 81(7):2506-14.
PMC: 4357945.
DOI: 10.1128/AEM.04023-14.
View
20.
Patnaik R, Liao J
. Engineering of Escherichia coli central metabolism for aromatic metabolite production with near theoretical yield. Appl Environ Microbiol. 1994; 60(11):3903-8.
PMC: 201913.
DOI: 10.1128/aem.60.11.3903-3908.1994.
View